Skip to main content

Advertisement

Log in

How to do and evaluate DWI and DCE-MRI sequences for diabetic foot assessment

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

MRI evaluation of the diabetic foot is still a challenge not only from an interpretative but also from a technical point of view. The incorporation of advanced sequences such as diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI into standard protocols for diabetic foot assessment could aid radiologists in differentiating between neuropathic osteoarthropathy (Charcot’s foot) and osteomyelitis. This distinction is crucial as both conditions can coexist in diabetic patients, and they require markedly different clinical management and have distinct prognoses. Over the past decade, several studies have explored the effectiveness of DWI and dynamic contrast-enhanced MRI (DCE-MRI) in distinguishing between septic and reactive bone marrow, as well as soft tissue involvement in diabetic patients, yielding promising results. DWI, without the need for exogenous contrast, can provide insights into the cellularity of bone marrow and soft tissues. DCE-MRI allows for a more precise evaluation of soft tissue and bone marrow perfusion compared to conventional post-gadolinium imaging. The data obtained from these sequences will complement the traditional MRI approach in assessing the diabetic foot. The objective of this review is to familiarize readers with the fundamental concepts of DWI and DCE-MRI, including technical adjustments and practical tips for image interpretation in diabetic foot cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Edmonds M, Manu C, Vas P. The current burden of diabetic foot disease. J Clin Orthop Trauma. 2021;17:88–93.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Normahani P, Shalhoub J. Diabetic foot disease. Surg. 2022; pp. 53–61. (United Kingdom). https://doi.org/10.1016/j.mpsur.2021.11.007.

  3. Syauta D, Mulawardi, Prihantono, Hendarto J, Mariana N, Sulmiati, et al. Risk factors affecting the degree of diabetic foot ulcers according to Wagner classification in diabetic foot patients. Med Clin Pract. 2021;4. https://doi.org/10.1016/j.mcpsp.2021.100231.

  4. Abdel Razek AAK, Samir S. Diagnostic performance of diffusion-weighted MR imaging in differentiation of diabetic osteoarthropathy and osteomyelitis in diabetic foot. Eur J Radiol. Elsevier Ireland Ltd; 2017;89:221–5. https://doi.org/10.1016/j.ejrad.2017.02.015.

  5. Pierre-Jerome C, Reyes EJ, Moncayo V, Chen ZN, Terk MR. MRI of the cuboid bone: analysis of changes in diabetic versus non-diabetic patients and their clinical significance. Eur J Radiol. 2012;81:2771–5. https://doi.org/10.1016/j.ejrad.2011.10.001. (Elsevier Ireland Ltd).

    Article  PubMed  Google Scholar 

  6. Baker JC, Demertzis JL, Rhodes NG, Wessell DE, Rubin DA. Diabetic musculoskeletal complications and their imaging mimics. Radiographics. 2012;32:1959–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23150851

  7. Schmidt BM, Holmes CM. Updates on diabetic foot and charcot osteopathic arthropathy. Curr Diab Rep. 2018;18(10):74. https://doi.org/10.1007/s11892-018-1047-8.

  8. Garcia-Diez AI, Tomas Batlle X, Perissinotti A, Isern-Kebschull J, Del Amo M, Soler JC, Bartolome A, Bencardino JT. Imaging of the diabetic foot. Semin Musculoskelet Radiol. 2023;27:314–26.

    Article  PubMed  Google Scholar 

  9. Martín Noguerol T, Luna Alcalá A, Beltrán LS, Gómez Cabrera M, Broncano Cabrero J, Vilanova JC. Advanced MR imaging techniques for differentiation of neuropathic arthropathy and osteomyelitis in the diabetic foot. RadioGraphics. 2017;37:1161–80. Available from: http://pubs.rsna.org/doi/10.1148/rg.2017160101

  10. Bajaj G, Chhabra A. Bone marrow changes and lesions of diabetic foot and ankle disease: conventional and advanced magnetic resonance imaging. Semin Musculoskelet Radiol. 2023;27:73–90.

    Article  PubMed  Google Scholar 

  11. Visser JJ, Goergen SK, Klein S, Martín-Noguerol T, Pickhardt PJ, Fayad LM, et al. The value of quantitative musculoskeletal imaging. Semin Musculoskelet Radiol. 2020;24:460–74.

  12. Iyengar KP, Jain VK, Awadalla Mohamed MK, Vaishya R, Vinjamuri S. Update on functional imaging in the evaluation of diabetic foot infection. J Clin Orthop Trauma. 2021;16:119–24.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chatha DS, Cunningham PM, Schweitzer ME. MR imaging of the diabetic foot: diagnostic challenges. Radiol Clin North Am. 2005;43(4):747–59. https://doi.org/10.1016/j.rcl.2005.02.008.

  14. Martín Noguerol T, MartínezBarbero JP. Advanced diffusion MRI and biomarkers in the central nervous system: A new approach. Radiología (English Ed). 2017;59:273–85. https://doi.org/10.1016/j.rxeng.2017.04.001. (SERAM).

    Article  Google Scholar 

  15. Martín-Noguerol T, Luna A, Cabrera MG, Riofrio AD. Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation. World J Orthop. 2017;8:660–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28979849.

  16. Griffith JF. Functional imaging of the musculoskeletal system. Quant Imaging Med Surg. AME Publications; 2015 [cited 2017 Jan 30];5:323–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26029633

  17. Subhawong TK, Jacobs MA, Fayad LM. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. RadioGraphics. 2014;34:1163–77. Available from: http://pubs.rsna.org/doi/10.1148/rg.345140190

  18. Dallaudière B, Lecouvet F, Vande Berg B, Omoumi P, Perlepe V, Cerny M, et al. Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts. Diagn Interv Imaging. 2015;96(4):327–40. https://doi.org/10.1016/j.diii.2014.10.008.

  19. Sandberg JK, Young VA, Syed AB, Yuan J, Hu Y, Sandino C, et al. Near-silent and distortion-free diffusion MRI in pediatric musculoskeletal disorders: comparison with echo planar imaging diffusion. J Magn Reson Imaging. 2021;53:504–13.

    Article  PubMed  Google Scholar 

  20. Dietrich O, Raya JG, Sommer J, Deimling M, Reiser MF, Baur-Melnyk A. A comparative evaluation of a RARE-based single-shot pulse sequence for diffusion-weighted MRI of musculoskeletal soft-tissue tumors. Eur Radiol. 2005;15:772–83.

    Article  PubMed  Google Scholar 

  21. Bhojwani N, Szpakowski P, Partovi S, Maurer MH, Grosse U, von Tengg-Kobligk H, et al. Diffusion-weighted imaging in musculoskeletal radiology-clinical applications and future directions. Quant Imaging Med Surg. 2015;5:740–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26682143%5Cn; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4671978

  22. Subhawong TK, Jacobs MA, Fayad LM. Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol. 2014 [cited 2014 Oct 13];203:560–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25148158

  23. Geith T, Schmidt G, Biffar A, Dietrich O, Dürr HR, Reiser M, et al. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures. Am J Roentgenol. 2012;199:1083–92.

    Article  Google Scholar 

  24. Iima M, Le Bihan D. Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology. Radiological Society of North America; 2016 [cited 2019 Jun 23];278:13–32. Available from: http://pubs.rsna.org/doi/10.1148/radiol.2015150244.

  25. Le Bihan D. Diffusion, confusion and functional MRI. Neuroimage. 2012;62:1131–6. https://doi.org/10.1016/j.neuroimage.2011.09.058. (Elsevier Inc.).

    Article  PubMed  Google Scholar 

  26. Lim HK, Jee WH, Jung JY, Paek MY, Kim I, Jung CK, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for differentiation of benign and malignant musculoskeletal tumours at 3 T. Br J Radiol. 2018;91:20170636. https://doi.org/10.1259/bjr.20170636.

  27. Bisdas S, Braun C, Skardelly M, Schittenhelm J, Teo TH, Thng CH, et al. Correlative assessment of tumor microcirculation using contrast-enhanced perfusion MRI and intravoxel incoherent motion diffusion-weighted MRI: is there a link between them? NMR Biomed. 2014:1184–91.

  28. Neubauer H, Evangelista L, Morbach H, Girschick H, Prelog M, Köstler H, et al. Diffusion-weighted MRI of bone marrow oedema, soft tissue oedema and synovitis in paediatric patients: feasibility and initial experience. Pediatr Rheumatol. 2012;10:20.

    Article  Google Scholar 

  29. Herneth AM, Friedrich K, Weidekamm C, Schibany N, Krestan C, Czerny C, et al. Diffusion weighted imaging of bone marrow pathologies. Eur J Radiol. 2005;55:74–83.

    Article  PubMed  Google Scholar 

  30. Eren MA, Karakaş E, Torun AN, Sabuncu T. The clinical value of diffusion-weighted magnetic resonance imaging in diabetic foot infection. J Am Podiatr Med Assoc. 2019;109:277–81.

    Article  PubMed  Google Scholar 

  31. Kruk KA, Dietrich TJ, Wildermuth S, Leschka S, Toepfer A, Waelti S, et al. Diffusion-weighted imaging distinguishes between osteomyelitis, bone marrow edema, and healthy bone on forefoot magnetic resonance imaging. J Magn Reson Imaging. 2022;56:1571–9.

    Article  PubMed  Google Scholar 

  32. Eguchi Y, Ohtori S, Yamashita M, Yamauchi K, Suzuki M, Orita S, et al. Diffusion magnetic resonance imaging to differentiate degenerative from infectious endplate abnormalities in the lumbar spine. Spine (Phila Pa 1976). 2011;36:E198-202.

    Article  PubMed  Google Scholar 

  33. Baur A, Dietrich O, Reiser M. Diffusion-weighted imaging of bone marrow: current status. Eur Radiol. 2003;13:1699–708.

    Article  PubMed  Google Scholar 

  34. Lavdas I, Rockall AG, Castelli F, Sandhu RS, Papadaki A, Honeyfield L, et al. Apparent diffusion coefficient of normal abdominal organs and bone marrow from whole-body DWI at 1.5 T: the effect of sex and age. Am J Roentgenol. 2015;205:242–50. Available from: http://www.ajronline.org/doi/10.2214/AJR.14.13964

  35. Raj S, Prakash M, Rastogi A, Sinha A, Sandhu MS. The role of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for the diagnosis of diabetic foot osteomyelitis: a preliminary report. Polish J Radiol. 2022;87:e274–80.

    Article  Google Scholar 

  36. Santos Armentia E, Martín Noguerol T, Suárez Vega V. Advanced magnetic resonance imaging techniques for tumors of the head and neck. Radiologia. 2019 [cited 2019 Mar 16];61:191–203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30772004

  37. Martín-Noguerol T, Casado-Verdugo OL, Beltrán LS, Aguilar G, Luna A. Role of advanced MRI techniques for sacroiliitis assessment and quantification. Eur J Radiol. 2023;163:110793. https://doi.org/10.1016/j.ejrad.2023.110793.

  38. Jans L, De Coninck T, Wittoek R, Lambrecht V, Huysse W, Verbruggen G, et al. 3 T DCE-MRI assessment of synovitis of the interphalangeal joints in patients with erosive osteoarthritis for treatment response monitoring. Skeletal Radiol. 2013 [cited 2014 Oct 13];42:255–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22669732

  39. van der Leij C, van de Sande MG, Lavini C, Tak PP, Maas M. Imaging time-intensity curve shape purpose : methods : results : conclusion. Radiology. 2009;253:234–40.

    PubMed  Google Scholar 

  40. Lavini C, Buiter MS, Maas M. Use of dynamic contrast enhanced time intensity curve shape analysis in MRI: theory and practice. Rep Med Imaging. 2013;6:71–82. https://doi.org/10.2147/RMI.S35088.

  41. Martín-Noguerol T, Barousse R, Luna A, Socolovsky M, Górriz JM, Gómez-Río M. New insights into the evaluation of peripheral nerves lesions: a survival guide for beginners. Neuroradiology. 2022;64:875–86. https://doi.org/10.1007/s00234-022-02916-x. (Springer Berlin Heidelberg).

    Article  PubMed  Google Scholar 

  42. Chu JP, Mak HKF, Yau KKW, Zhang L, Tsang J, Chan Q, et al. Pilot study on evaluation of any correlation between MR perfusion (Ktrans) and diffusion (apparent diffusion coefficient) parameters in brain tumors at 3 tesla. Cancer Imaging. 2012;12:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Garcia Diez AI, Fuster D, Morata L, Torres F, Garcia R, Poggio D, et al. Comparison of the diagnostic accuracy of diffusion-weighted and dynamic contrast-enhanced MRI with 18F-FDG PET/CT to differentiate osteomyelitis from Charcot neuro-osteoarthropathy in diabetic foot. Eur J Radiol. 2020;132:109299. https://doi.org/10.1016/j.ejrad.2020.109299.

  44. Zampa V, Bargellini I, Rizzo L, Turini F, Ortori S, Piaggesi A, et al. Role of Dynamic MRI in the follow-up of acute Charcot foot in patients with diabetes mellitus. Skeletal Radiol. 2011;40:991–9.

    Article  PubMed  Google Scholar 

  45. Tardáguila-García A, Sanz-Corbalán I, García-Alamino JM, Ahluwalia R, Uccioli L, Lázaro-Martínez JL. Medical versus surgical treatment for the management of diabetic foot osteomyelitis: a systematic review. J Clin Med. 2021;10(6):1237. https://doi.org/10.3390/jcm10061237.

  46. Liao D, Xie L, Han Y, Du S, Wang H, Zeng C, et al. Dynamic contrast-enhanced magnetic resonance imaging for differentiating osteomyelitis from acute neuropathic arthropathy in the complicated diabetic foot. Skeletal Radiol. 2018;47:1337–47 (Springer Verlag).

    Article  PubMed  Google Scholar 

  47. Israel O, Nakajo M, Nunes RF, Packard AT. The Global Reading Room: nuclear medicine imaging of a diabetic foot ulcer. Am J Roentgenol. 2022:681–2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Martín-Noguerol.

Ethics declarations

Conflict of interest

Antonio Luna, MD, PhD is occasional lecturer of Philips, Siemens Healthineers, Bracco, and Canon and receives royalties as book editor from Springer-Verlag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

- Differentiating between neuropathic osteoarthropathy and osteomyelitis remains challenging in standard clinical and radiological practice.

- Incorporating advanced MRI sequences like DWI and DCE-MRI into routine protocols could provide a valuable source of additional pathophysiological information for this purpose.

- DWI and DCE-MRI require specific technical adjustments and a solid understanding of image interpretation to accurately correlate with the underlying pathophysiological mechanisms present in the diabetic foot.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Noguerol, T., Díaz-Angulo, C., Vilanova, C. et al. How to do and evaluate DWI and DCE-MRI sequences for diabetic foot assessment. Skeletal Radiol (2023). https://doi.org/10.1007/s00256-023-04518-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00256-023-04518-x

Keywords

Navigation