Skip to main content
Log in

Obligate Gut Symbiotic Association with Caballeronia in the Mulberry Seed Bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae)

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Many insects possess symbiotic bacteria in their bodies, and microbial symbionts play pivotal metabolic roles for their hosts. Members of the heteropteran superfamilies Coreoidea and Lygaeoidea stinkbugs harbor symbionts of the genus Caballeronia in their intestinal tracts. Compared with symbiotic associations in Coreoidea, those in Lygaeoidea insects are still less understood. Here, we investigated a symbiotic relationship involving the mulberry seed bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae) using histological observations, cultivation of the symbiont, 16S rRNA gene amplicon sequencing, and infection testing of cultured symbionts. Histological observations and cultivation revealed that P. dissimilis harbors Caballeronia symbionts in the crypts of its posterior midgut. 16S rRNA gene amplicon sequencing of field-collected P. dissimilis confirmed that the genus Caballeronia is dominant in the midgut of natural populations of P. dissimilis. In addition, PCR diagnostics showed that the eggs were free of symbiotic bacteria, and hatchlings horizontally acquired the symbionts from ambient soil. Infection and rearing experiments revealed that symbiont-free aposymbiotic individuals had abnormal body color, small body size, and, strikingly, a low survival rate, wherein no individuals reached adulthood, indicating an obligate cooperative mutualism between the mulberry seed bug and Caballeronia symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  2. Kikuchi Y (2009) Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ 24:195–204. https://doi.org/10.1264/jsme2.ME09140S

    Article  PubMed  Google Scholar 

  3. Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 7:17–34. https://doi.org/10.1146/annurev-ento-010814-020822

    Article  CAS  Google Scholar 

  4. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. https://doi.org/10.1038/nrmicro3182

    Article  CAS  PubMed  Google Scholar 

  5. Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A 106:19521–19526. https://doi.org/10.1073/pnas.0907504106

    Article  PubMed  PubMed Central  Google Scholar 

  6. Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci 78:4601–4605. https://doi.org/10.1073/pnas.78.7.460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Itoh H, Tago K, Hayatsu M, Kikuchi Y (2018) Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 35:434–454. https://doi.org/10.1039/C7NP00051K

    Article  CAS  PubMed  Google Scholar 

  8. Ishigami K, Jang S, Itoh H, Kikuchi Y (2021) Insecticide resistance governed by gut symbiosis in a rice pest, Cletus punctiger, under laboratory conditions. Biol Lett 17:1–6. https://doi.org/10.1098/rsbl.2020.0780

    Article  CAS  Google Scholar 

  9. Sato Y, Jang S, Takeshita K, Itoh H, Koike H, Tago K, Hayatsu M, Hori T, Kikuchi Y (2021) Insecticide resistance by a host-symbiont reciprocal detoxification. Nat Commun 12:1–8. https://doi.org/10.1038/s41467-021-26649-2

    Article  CAS  Google Scholar 

  10. Oliver KM, Russell JA, Morant NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807. https://doi.org/10.1073/pnas.0335320100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anbutsu H, Moriyama M, Nikoh N, Hosokawa T, Futahashi R, Tanahashi M, Meng XY, Kuriwada T, Mori N, Oshima K, Hattori M, Fujie M, Satoh N, Maeda T, Shigenobu S, Koga R, Fukatsu T (2017) Small genome symbiont underlies cuticle hardness in beetles. Proc Natl Acad Sci U S A 114:E8382–E8391. https://doi.org/10.1073/pnas.1712857114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon J-C, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science 330:1102–1104. https://doi.org/10.1126/science.1195463

    Article  CAS  PubMed  Google Scholar 

  13. Glasgow H (1914) The gastric caeca and the caecal bacteria of the Heteroptera. Biol Bull 26:101–170. https://doi.org/10.2307/1536004

    Article  Google Scholar 

  14. Kikuchi Y, Hosokawa T, Fukatsu T (2011) An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J 5:446–460. https://doi.org/10.1038/ismej.2010.150

    Article  PubMed  Google Scholar 

  15. Kikuchi Y, Prado SS, Jenkins TM (2019) Symbiotic microorganisms associated with Pentatomoidea. McPherson J. E. Invasive stink bugs and related species (Pentatomoidea). Boca Raton. CRC Press. https://doi.org/10.1201/9781315371221

  16. Hosokawa T, Imanishi M, Koga R, Fukatsu T (2019) Diversity and evolution of bacterial symbionts in the gut symbiotic organ of jewel stinkbugs (Hemiptera: Scutelleridae). Appl Entomol Zool 54:359–367. https://doi.org/10.1007/s13355-019-00630-4

    Article  CAS  Google Scholar 

  17. Itoh H, Matsuura Y, Hosokawa T, Fukatsu T, Kikuchi Y (2017) Obligate gut symbiotic association in the sloe bug Dolycoris baccarum (Hemiptera: Pentatomidae). Appl Entomol Zool 52:51–59. https://doi.org/10.1007/s13355-016-0453-0

    Article  CAS  Google Scholar 

  18. Hosokawa T, Kikuchi Y, Nikon N, Meng XY, Hironaka M, Fukatsu T (2010) Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug parastrachia japonensis. Appl Environ Microbiol 76:4130–4135. https://doi.org/10.1128/AEM.00616-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Kimura N, Ito M, Fukatsu T (2010) Primary gut symbiont and secondary, sodalis-allied symbiont of the scutellerid stinkbug cantao ocellatus. Appl Environ Microbiol 76:3486–3494. https://doi.org/10.1128/AEM.00421-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kikuchi Y, Hosokawa T, Nikoh N, Fukatsu T (2012) Gut symbiotic bacteria in the cabbage bugs Eurydema rugosa and Eurydema dominulus (Heteroptera: Pentatomidae). Appl Entomol Zool 47:1–8. https://doi.org/10.1007/s13355-011-0081-7

    Article  Google Scholar 

  21. Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T (2012) Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 78:4149–4156. https://doi.org/10.1128/AEM.00673-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karamipour N, Mehrabadi M, Fathipour Y (2016) Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma Lineatum (Hemiptera: Pentatomidae). Sci Rep 6:21–25. https://doi.org/10.1038/srep33168

    Article  CAS  Google Scholar 

  23. Tada A, Kikuchi Y, Hosokawa T, Musolin DL, Fujisaki K, Fukatsu T (2011) Obligate association with gut bacterial symbiont in Japanese populations of the southern green stinkbug Nezara viridula (Heteroptera: Pentatomidae). Appl Entomol Zool 46:483–488. https://doi.org/10.1007/s13355-011-0066-6

    Article  Google Scholar 

  24. Bistolas KSI, Sakamoto RI, Fernandes JAM, Goffredi SK (2014) Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front Microbiol 5:1–15. https://doi.org/10.3389/fmicb.2014.00349

    Article  Google Scholar 

  25. Küchler SM, Dettner K, Kehl S (2010) Molecular characterization and localization of the obligate endosymbiotic bacterium in the birch catkin bug Kleidocerys resedae (Heteroptera: Lygaeidae, Ischnorhynchinae). FEMS Microbiol Ecol 73:408–418. https://doi.org/10.1111/j.1574-6941.2010.00890.x

    Article  CAS  PubMed  Google Scholar 

  26. Matsuura Y, Kikuchi Y, Hosokawa T, Koga R, Meng XY, Kamagata Y, Nikoh N, Fukatsu T (2012) Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME J 6:397–409. https://doi.org/10.1038/ismej.2011.103

    Article  CAS  PubMed  Google Scholar 

  27. Hosokawa T, Fukatsu T (2020) Relevance of microbial symbiosis to insect behavior. Curr Opin Insect Sci 39:91–100. https://doi.org/10.1016/j.cois.2020.03.004

    Article  PubMed  Google Scholar 

  28. Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M, Meng XY, Maeda T, Yamaguchi K, Shigenobu S, Ito M, Fukatsu T (2014) Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr Biol 24:2465–2470. https://doi.org/10.1016/j.cub.2014.08.065

    Article  CAS  PubMed  Google Scholar 

  29. Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T (2016) Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat Microbiol 1:1–7. https://doi.org/10.1038/nmicrobiol.2015.11

    Article  CAS  Google Scholar 

  30. Ohbayashi T, Itoh H, Lachat J, Kikuchi Y, Mergaert P (2019) Burkholderia gut symbionts associated with European and Japanese populations of the dock bug Coreus marginatus (Coreoidea: Coreidae). Microbes Environ 34:219–222. https://doi.org/10.1264/jsme2.ME19011

    Article  PubMed  PubMed Central  Google Scholar 

  31. Takeshita K, Matsuura Y, Itoh H, Navarro R, Hori T, Sone T, Kamagata Y, Mergaert P, Kikuchi Y (2015) Burkholderia of plant-beneficial group are symbiotically associated with bordered plant bugs (Heteroptera: Pyrrhocoroidea: Largidae). Microbes Environ 30:321–329. https://doi.org/10.1264/jsme2.ME15153

    Article  PubMed  PubMed Central  Google Scholar 

  32. Itoh H, Aita M, Nagayama A, Meng X, Kamagata Y, Navarro R, Hori T, Ohgiya S, Kikuchi Y (2014) Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae). Appl Environ Microbiol 80:5974–5983. https://doi.org/10.1128/AEM.01087-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kikuchi Y, Meng XY, Fukatsu T (2005) Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl Environ Microbiol 71:4035–4043. https://doi.org/10.1128/AEM.71.7.4035-4043.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takeshita K, Kikuchi Y (2017) Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect–microbe symbiotic associations. Res Microbiol 168:175–187. https://doi.org/10.1016/j.resmic.2016.11.005

    Article  PubMed  Google Scholar 

  35. Kuechler SM, Matsyuura Y, Dettner K, Kikuchi Y (2016) Phylogenetically diverse Burkholderia associated with midgut crypts of spurge bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae). Microbes Environ 31:145–153. https://doi.org/10.1264/jsme2.ME16042

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu Y, Buss EA, Boucias DG (2016) Culturing and characterization of gut symbiont Burkholderia spp. from the Southern chinch bug, Blissus insularis (Hemiptera: Blissidae). Appl Environ Microbiol 82:3319–3330. https://doi.org/10.1128/AEM.00367-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dobritsa AP, Samadpour M (2016) Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836–2846. https://doi.org/10.1099/ijsem.0.001065

    Article  CAS  PubMed  Google Scholar 

  38. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus burkholderia: proposal for division of this genus into the emended genus burkholderia containing pathogenic organisms and a new genus paraburkholderia gen. nov. harboring environmental species. Front Genet 5. https://doi.org/10.3389/fgene.2014.00429

  39. Beukes CW, Palmer M, Manyaka P, Chan WY, Avontuur JR, van Zyl E, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Daum C, Shapiro N, Markowitz V, Ivanova N, Kyrpides N, Woyke T, Blom J, Whitman WB, Venter SN, Steenkamp ET (2017) Genome data provides high support for generic boundaries in Burkholderia sensu lato. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01154

  40. Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Corrêa DBA, Weir BS, Park D, Ottoboni LMM, Neto JR, Destéfano SAL (2017) Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 110:727–736. https://doi.org/10.1007/s10482-017-0842-6

    Article  CAS  Google Scholar 

  41. Estrada-de los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L, Khan N, Maluk M, Lafos M, Humm E, Arrabit M, Crook M, Gross E, Simon MF, dos Reis Junior FB, Whitman WB, Shapiro N, Poole PS, Hirsch AM, Venter SN, James EK (2018) Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes (Basel) 9. https://doi.org/10.3390/genes9080389

  42. Lin QH, Lv YY, Gao ZH, Qiu LH (2020) Pararobbsia silviterrae gen. nov., sp. nov., isolated from forest soil and reclassification of Burkholderia alpina as Pararobbsia alpina comb. nov. Int J Syst Evol Microbiol 70:1412–1420. https://doi.org/10.1099/ijsem.0.003932

    Article  CAS  PubMed  Google Scholar 

  43. Ohbayashi T, Cossard R, Lextrait G, Hosokawa T, Lesieur V, Takeshita K, Tago K, Mergaert P, Kikuchi Y (2022) Intercontinental diversity of Caballeronia gut symbionts in the conifer pest bug Leptoglossus occidentalis. Microbes Environ 37:1–9. https://doi.org/10.1264/jsme2.ME22042

    Article  Google Scholar 

  44. Peeters C, Meier-Kolthoff JP, Verheyde B, De Brandt E, Cooper VS, Vandamme P (2016) Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol 7:1–19. https://doi.org/10.3389/fmicb.2016.00877

    Article  Google Scholar 

  45. Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission : a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73:4308–4316. https://doi.org/10.1128/AEM.00067-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kikuchi Y, Hosokawa T, Fukatsu T (2011) Specific developmental window for establishment of an insect-microbe gut symbiosis 77:4075–4081. https://doi.org/10.1128/AEM.00358-11

  47. Lee JB, Park KE, Lee SA, Jang SH, Eo HJ, Jang HA, Kim CH, Ohbayashi T, Matsuura Y, Kikuchi Y, Futahashi R, Fukatsu T, Lee BL (2017) Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Dev Comp Immunol 69:12–22. https://doi.org/10.1016/j.dci.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  48. Kim JK, Lee JB, Huh YR, Jang HA, Kim CH, Yoo JW, Lee BL (2015) Burkholderia gut symbionts enhance the innate immunity of host Riptortus pedestris. Dev Comp Immunol 53:265–269. https://doi.org/10.1016/j.dci.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  49. Vinokurov NN (2019) Paradieuches dissimilis (Distant, 1883)—new genus and new species of seed bug (Heteroptera: Lygaeidae) in the fauna of Russia from the South of the Far East Russ. Entomol J 28:1–4. https://doi.org/10.15298/rusentj.28.1.01

    Article  Google Scholar 

  50. Kwon T-S, Jung S, Park Y-S (2021) Inverse relationship of Hemiptera richness with temperature in South Korea. Korean J Ecol Environ 54:102–107. https://doi.org/10.11614/KSL.2021.54.2.102

    Article  Google Scholar 

  51. Tomohide Y, Mikio T, Izumi Y, Mitsuru K, Tetsuo K (1993) Terrestrial heteropterans: a field guide to Japanese bugs. Zenkoku noson Kyoiku Kyokai, Tokyo

  52. Vanderzant ES, Pool MC, Richardson CD (1962) The role of ascorbic acid in the nutrition of three cotton insects. J Insect Physiol 8:287–297. https://doi.org/10.1016/0022-1910(62)90032-X

    Article  CAS  Google Scholar 

  53. Chippendale GM (1975) Ascorbic acid: an essential nutrient for a plant feeding insect, Diatraea grandiosella. J Nutr 105:499–507. https://doi.org/10.1093/jn/105.4.499

    Article  CAS  PubMed  Google Scholar 

  54. Tago K, Itoh H, Kikuchi Y, Hori T, Sato Y, Nagayama A, Okubo T, Navarro R, Aoyagi T, Hayashi K, Hayatsu M (2014) A fine-scale phylogenetic analysis of free-living burkholderia species in sugarcane field soil. Microbes Environ 29:434–437. https://doi.org/10.1264/jsme2.ME14122

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fukatsu T, Nikoh N (1998) Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (insecta Homoptera). Appl Environ Microbiol 64:3599–3606. https://doi.org/10.1128/aem.64.10.3599-3606.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vergunst AC, Meijer AH, Renshaw SA, O’Callaghan D (2010) Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun 78:1495–1508. https://doi.org/10.1128/IAI.00743-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edgar RC (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 081257. https://doi.org/10.1101/081257

  59. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128. https://doi.org/10.1093/bioinformatics/btl529

    Article  CAS  PubMed  Google Scholar 

  62. Ohbayashi T, Takeshita K, Kitagawa W, Nikohc N, Koga R, Meng XY, Tago K, Hori T, Hayatsu M, Asano K, Kamagata Y, Lee BL, Fukatsu T, Kikuchi Y (2015) Insect’s intestinal organ for symbiont sorting. Proc Natl Acad Sci U S A 112:E5179–E5188. https://doi.org/10.1073/pnas.1511454112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martinson VG, Gawryluk RMR, Gowen BE, Curtis CI, Jaenike J, Perlman SJ (2020) Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proc Natl Acad Sci U S A 117:31979–31986. https://doi.org/10.1073/pnas.2000860117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hypša V, Aksoy S (1997) Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug Cimex lectularius (Heteroptera: Cimicidae). Insect Mol Biol 6:301–304. https://doi.org/10.1046/j.1365-2583.1997.00178.x

    Article  PubMed  Google Scholar 

  65. Campbell BC, Purcell AH (1993) Phylogenetic affiliation of BEV, a bacterial parasite of the leafhopper Euscelidius variegatus, on the basis of 16S rDNA sequences. Curr Microbiol 26:37–41. https://doi.org/10.1007/BF01577240

    Article  CAS  PubMed  Google Scholar 

  66. Kuechler SM, Dettner K, Kehl S (2011) Characterization of an obligate intracellular bacterium in the midgut epithelium of the bulrush bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae). Appl Environ Microbiol 77:2869–2876. https://doi.org/10.1128/AEM.02983-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nikoh N, Tsuchida T, Maeda T, Yamaguchi K, Shigenobu S, Koga R, Fukatsu T (2018) Genomic insight into symbiosis-induced insect color change by a facultative bacterial endosymbiont, “candidatus rickettsiella viridis.” MBio 9. https://doi.org/10.1128/mBio.00890-18

  68. Taylor M, Mediannikov O, Raoult D, Greub G (2012) Endosymbiotic bacteria associated with nematodes, ticks and amoebae. FEMS Immunol Med Microbiol 64:21–31. https://doi.org/10.1111/j.1574-695X.2011.00916.x

    Article  CAS  PubMed  Google Scholar 

  69. Rosenwald LC, Sitvarin MI, White JA (2020) Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host. Proc R Soc B Biol Sci 287. https://doi.org/10.1098/rspb.2020.1107

  70. Acevedo TS, Fricker GP, Garcia JR, Alcaide T, Berasategui A, Stoy KS, Gerardo NM (2021) The importance of environmentally acquired bacterial symbionts for the squash bug (Anasa tristis), a significant agricultural pest. Front Microbiol 12:1–18. https://doi.org/10.3389/fmicb.2021.719112

    Article  Google Scholar 

  71. Boucias DG, Garcia-Maruniak A, Cherry R, Lu H, Maruniak JE, Lietze VU (2012) Detection and characterization of bacterial symbionts in the Heteropteran, Blissus insularis. FEMS Microbiol Ecol 82:629–641. https://doi.org/10.1111/j.1574-6941.2012.01433.x

    Article  CAS  PubMed  Google Scholar 

  72. Xu Y, Buss EA, Boucias DG (2016) Impacts of antibiotic and bacteriophage treatments on the gut-symbiont-associated Blissus insularis (Hemiptera: Blissidae). Insects 7. https://doi.org/10.3390/insects7040061

  73. Ravenscraft A, Thairu MW, Hansen AK, Hunter MS (2020) Continent-scale sampling reveals fine-scale turnover in a beneficial bug symbiont. Front Microbiol 11:1–13. https://doi.org/10.3389/fmicb.2020.01276

    Article  Google Scholar 

  74. Hunter MS, Umanzor EF, Kelly SE, Whitaker SM, Ravenscraft A (2022) Development of common leaf-footed bug pests depends on the presence and identity of their environmentally acquired symbionts. Appl Environ Microbiol 88. https://doi.org/10.1128/aem.01778-21

  75. Łukasik P, van Asch M, Guo H, Ferrari J, Charles H (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218. https://doi.org/10.1111/ele.12031

    Article  PubMed  Google Scholar 

  76. Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M (2002) High Wolbachia density in insecticide-resistant mosquitoes. Proc R Soc B Biol Sci 269:1413–1416. https://doi.org/10.1098/rspb.2002.2022

    Article  Google Scholar 

  77. Hosokawa T, Koga R, Kikuchi Y, Meng X, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A 107:769–774. https://doi.org/10.1073/pnas.091147610

    Article  CAS  PubMed  Google Scholar 

  78. Nadal-Jimenez P, Siozios S, Halliday N, Cámara M, Hurst GDD (2022) Symbiopectobacterium purcellii, gen. nov., sp. nov., isolated from the leafhopper Empoasca decipiens. Int J Syst Evol Microbiol 72:1–13. https://doi.org/10.1099/ijsem.0.005440

    Article  CAS  Google Scholar 

  79. Husnik F, McCutcheon JP (2016) Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci U S A 113:E5416–E5424. https://doi.org/10.1073/pnas.1603910113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuechler SM, Renz P, Dettner K, Kehl S (2012) Diversity of symbiotic organs and bacterial endosymbionts of: Lygaeoid bugs of the families blissidae and lygaeidae (Hemiptera: Heteroptera: Lygaeoidea). Appl Environ Microbiol 78:2648–2659. https://doi.org/10.1128/AEM.07191-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. da Mota FF, Marinho LP, de Moreira CJC, Lima MM, Mello CB, Garcia ES, Carels N, Azambuja P (2012) Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl Trop Dis 6:1–13. https://doi.org/10.1371/journal.pntd.0001631

    Article  CAS  Google Scholar 

  82. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. https://doi.org/10.1038/nrmicro1969

    Article  CAS  PubMed  Google Scholar 

  83. Kikuchi Y, Fukatsu T (2003) Diversity of Wolbachia endosymbionts in Heteropteran bugs. Appl Environ Microbiol 69:6082–6090. https://doi.org/10.1128/AEM.69.10.6082-6090.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Itoh H, Jang S, Takeshita K, Ohbayashi T, Ohnishi N, Meng XY, Mitani Y, Kikuchi Y (2019) Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc Natl Acad Sci U S A 116:22673–22682. https://doi.org/10.1073/pnas.1912397116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Itoh H, Hori T, Sato Y, Nagayama A, Tago K, Hayatsu M, Kikuchi Y (2018) Infection dynamics of insecticide-degrading symbionts from soil to insects in response to insecticide spraying. ISME J 12:909–920. https://doi.org/10.1038/s41396-017-0021-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim J, Jung M, Lee D (2022) Characterization of Burkholderia bacteria clade compositions in soil and Riptortus pedestris ( Hemiptera : Alydidae ) in South Korea. J Asia Pac Entomol 25:1–8. https://doi.org/10.1016/j.aspen.2022.101976

    Article  Google Scholar 

  87. Jang S, Kikuchi Y (2020) Re-opening of the symbiont sorting organ with aging in Riptortus pedestris. J Asia Pac Entomol 23:1089–1095. https://doi.org/10.1016/j.aspen.2020.09.005

    Article  Google Scholar 

  88. Mainali BP, Kim HJ, Yoon YN, Oh IS, Do BS (2014) Evaluation of different leguminous seeds as food sources for the bean bug Riptortus pedestris. J Asia Pac Entomol 17:115–117. https://doi.org/10.1016/j.aspen.2013.11.007

    Article  Google Scholar 

  89. Kim H-B, Kweon H, Ju W-T, Jo Y-Y, Kim Y-S (2019) Nutrient compositions of Korean mulberry fruits (Morus sp.) dried with low temperature vacuum dryer using microwave. Int J Ind Entomol 42:14–20. https://doi.org/10.7852/ijie.2021.42.1.14

    Article  Google Scholar 

  90. Ohbayashi T, Futahashi R, Terashima M, Barrière Q, Lamouche F, Takeshita K, Meng XY, Mitani Y, Sone T, Shigenobu S, Fukatsu T, Mergaert P, Kikuchi Y (2019) Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture. ISME J 13:1469–1483. https://doi.org/10.1038/s41396-019-0361-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Salem H, Kaltenpoth M (2021) Beetle–bacterial symbioses: endless forms most functional. Annu Rev Entomol 67:201–219. https://doi.org/10.1146/annurev-ento-061421-063433

    Article  CAS  PubMed  Google Scholar 

  92. Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y (2016) Cuticle formation and pigmentation in beetles. Curr Opin Insect Sci 17:1–9. https://doi.org/10.1016/j.cois.2016.05.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Ooi and A. Sawaguchi (AIST) for insect rearing.

Funding

This study was supported by JSPS Research Fellowships for Young Scientists to SJ (21F21090) and by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) KAKENHI to YK (20H03303).

Author information

Authors and Affiliations

Authors

Contributions

KI, SJ, and YK designed and developed the study. KI, SJ, and HI performed 16S rRNA amplicon sequencing and data analysis. KI and SJ performed other experiments and statistical analyses. KI, SJ, and YK wrote the manuscript.

Corresponding author

Correspondence to Seonghan Jang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 640 KB)

Supplementary file2 (XLSX 18 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishigami, K., Jang, S., Itoh, H. et al. Obligate Gut Symbiotic Association with Caballeronia in the Mulberry Seed Bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae). Microb Ecol 86, 1307–1318 (2023). https://doi.org/10.1007/s00248-022-02117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02117-2

Keywords

Navigation