Skip to main content
Log in

Quantification of thalamic nuclei in patients diagnosed with temporal lobe epilepsy and hippocampal sclerosis

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to investigate the changes in the volume of individual thalamic nuclei in patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS).

Methods

We enrolled 80 TLE patients with HS and 40 healthy controls. All of the subjects underwent 3D T1-weighted imaging. The hippocampus subfields and thalamic nuclei were segmented using the FreeSurfer program. We investigated volume changes in thalamic nuclei according to the HS side involved, and types or antiepileptic drug (AED) response compared with healthy controls.

Results

Compared with healthy controls, patients with HS showed atrophy of thalamic nuclei involving right and left parafascicular nuclei. In the right HS, the atrophy of the right thalamic nucleus was more prominent than that of the left thalamic nucleus, whereas the reduction in the volume of left thalamic nuclei was more prominent in patients with left HS. The reduction in thalamic nuclear volumes was more prominent in HS type 1 (atrophy of both CA1 and CA4 regions) than in other HS types. The suprageniculate nuclear volumes were significantly increased in patients with drug-controlled epilepsy.

Conclusions

Our study demonstrates thalamic nuclear atrophy in TLE patients with HS. In addition, the atrophy of individual thalamic nuclei varied according to the HS side, the HS types, and the AED response. These findings suggest that the role of thalamic nuclei varied in TLE with HS subtypes and displayed varying degrees of vulnerability in the pathology networks associated with the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blumcke I (2009) Neuropathology of focal epilepsies: a critical review. Epilepsy Behav 15(1):34–39. https://doi.org/10.1016/j.yebeh.2009.02.033

    Article  PubMed  Google Scholar 

  2. Kuzniecky RI, Knowlton RC (2002) Neuroimaging of epilepsy. Semin Neurol 22(3):279–288. https://doi.org/10.1055/s-2002-36647

    Article  PubMed  Google Scholar 

  3. Sadler RM (2006) The syndrome of mesial temporal lobe epilepsy with hippocampal sclerosis: clinical features and differential diagnosis. Adv Neurol 97:27–37

    PubMed  Google Scholar 

  4. Blumcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshe SL, Oz B, Ozkara C, Perucca E, Sisodiya S, Wiebe S, Spreafico R (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54(7):1315–1329. https://doi.org/10.1111/epi.12220

    Article  PubMed  Google Scholar 

  5. Jardim AP, Neves RS, Caboclo LO, Lancellotti CL, Marinho MM, Centeno RS, Cavalheiro EA, Scorza CA, Yacubian EM (2012) Temporal lobe epilepsy with mesial temporal sclerosis: hippocampal neuronal loss as a predictor of surgical outcome. Arq Neuropsiquiatr 70(5):319–324

    Article  Google Scholar 

  6. Kwan BYM, Salehi F, Kope R, Lee DH, Sharma M, Hammond R, Burneo JG, Steven D, Peters T, Khan AR (2017) Evaluation of ex-vivo 9.4T MRI in post-surgical specimens from temporal lobe epilepsy patients. J Neuroradiol 44(6):377–380. https://doi.org/10.1016/j.neurad.2017.05.007

    Article  PubMed  Google Scholar 

  7. Steve TA, Jirsch JD, Gross DW (2014) Quantification of subfield pathology in hippocampal sclerosis: a systematic review and meta-analysis. Epilepsy Res 108(8):1279–1285. https://doi.org/10.1016/j.eplepsyres.2014.07.003

    Article  PubMed  Google Scholar 

  8. Jones EG (2007) The thalamus, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  9. Maller JJ, Welton T, Middione M, Callaghan FM, Rosenfeld JV, Grieve SM (2019) Revealing the hippocampal connectome through super-resolution 1150-direction diffusion MRI. Sci Rep 9(1):2418–2413. https://doi.org/10.1038/s41598-018-37905-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757. https://doi.org/10.1038/nn1075

    Article  CAS  PubMed  Google Scholar 

  11. Aracri P, de Curtis M, Forcaia G, Uva L (2018) Enhanced thalamo-hippocampal synchronization during focal limbic seizures. Epilepsia 59(9):1774–1784. https://doi.org/10.1111/epi.14521

    Article  PubMed  Google Scholar 

  12. Park KM, Kim SE, Shin KJ, Ha SY, Park J, Kim TH, Mun CW, Lee BI, Kim SE (2017) Effective connectivity in temporal lobe epilepsy with hippocampal sclerosis. Acta Neurol Scand 135(6):670–676. https://doi.org/10.1111/ane.12669

    Article  CAS  PubMed  Google Scholar 

  13. Zheng L, Bin G, Zeng H, Zou D, Gao J, Zhang J, Huang B (2018) Meta-analysis of voxel-based morphometry studies of gray matter abnormalities in patients with mesial temporal lobe epilepsy and unilateral hippocampal sclerosis. Brain Imaging Behav 12(5):1497–1503. https://doi.org/10.1007/s11682-017-9797-5

    Article  PubMed  Google Scholar 

  14. Li J, Zhang Z, Shang H (2012) A meta-analysis of voxel-based morphometry studies on unilateral refractory temporal lobe epilepsy. Epilepsy Res 98(2–3):97–103. https://doi.org/10.1016/j.eplepsyres.2011.10.002

    Article  PubMed  Google Scholar 

  15. Jo HJ, Kenny-Jung DL, Balzekas I, Benarroch EE, Jones DT, Brinkmann BH, Matt Stead S, Van Gompel JJ, Welker KM, Worrell GA (2019) Nuclei-specific thalamic connectivity predicts seizure frequency in drug-resistant medial temporal lobe epilepsy. Neuroimage Clin 21:101671. https://doi.org/10.1016/j.nicl.2019.101671

    Article  PubMed  PubMed Central  Google Scholar 

  16. Engelborghs S, Marien P, Martin JJ, De Deyn PP (1998) Functional anatomy, vascularisation and pathology of the human thalamus. Acta Neurol Belg 98(3):252–265

    CAS  PubMed  Google Scholar 

  17. Kumar VJ, van Oort E, Scheffler K, Beckmann CF, Grodd W (2017) Functional anatomy of the human thalamus at rest. Neuroimage 147:678–691. https://doi.org/10.1016/j.neuroimage.2016.12.071

    Article  PubMed  Google Scholar 

  18. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshe SL, Perucca E, Wiebe S, French J (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51(6):1069–1077. https://doi.org/10.1111/j.1528-1167.2009.02397.x

    Article  CAS  PubMed  Google Scholar 

  19. Iglesias JE, Insausti R, Lerma-Usabiaga G, Bocchetta M, Van Leemput K, Greve DN, van der Kouwe A, Alzheimer's Disease Neuroimaging I, Fischl B, Caballero-Gaudes C, Paz-Alonso PM (2018) A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183:314–326. https://doi.org/10.1016/j.neuroimage.2018.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  20. Feger J, Bevan M, Crossman AR (1994) The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience 60(1):125–132

    Article  CAS  Google Scholar 

  21. Brown HD, Baker PM, Ragozzino ME (2010) The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. J Neurosci 30(43):14390–14398. https://doi.org/10.1523/JNEUROSCI.2167-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vogt BA, Hof PR, Friedman DP, Sikes RW, Vogt LJ (2008) Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei. Brain Struct Funct 212(6):465–479. https://doi.org/10.1007/s00429-008-0178-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. Langlois M, Polack PO, Bernard H, David O, Charpier S, Depaulis A, Deransart C (2010) Involvement of the thalamic parafascicular nucleus in mesial temporal lobe epilepsy. J Neurosci 30(49):16523–16535. https://doi.org/10.1523/JNEUROSCI.1109-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Z, Li JJ, Lu QC, Gong HQ, Liang PJ, Zhang PM (2016) Interaction between thalamus and hippocampus in termination of amygdala-kindled seizures in mice. Comput Math Methods Med 2016:9580724. https://doi.org/10.1155/2016/9580724

    Article  PubMed  PubMed Central  Google Scholar 

  25. Valentin A, Garcia Navarrete E, Chelvarajah R, Torres C, Navas M, Vico L, Torres N, Pastor J, Selway R, Sola RG, Alarcon G (2013) Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies. Epilepsia 54(10):1823–1833. https://doi.org/10.1111/epi.12352

    Article  PubMed  Google Scholar 

  26. Son BC, Shon YM, Choi JG, Kim J, Ha SW, Kim SH, Lee SH (2016) Clinical outcome of patients with deep brain stimulation of the centromedian thalamic nucleus for refractory epilepsy and location of the active contacts. Stereotact Funct Neurosurg 94(3):187–197. https://doi.org/10.1159/000446611

    Article  PubMed  Google Scholar 

  27. Blumcke I, Thom M, Wiestler OD (2002) Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12(2):199–211

    PubMed  Google Scholar 

  28. Goubran M, Bernhardt BC, Cantor-Rivera D, Lau JC, Blinston C, Hammond RR, de Ribaupierre S, Burneo JG, Mirsattari SM, Steven DA, Parrent AG, Bernasconi A, Bernasconi N, Peters TM, Khan AR (2016) In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy. Hum Brain Mapp 37(3):1103–1119. https://doi.org/10.1002/hbm.23090

    Article  PubMed  Google Scholar 

  29. Thom M, Zhou J, Martinian L, Sisodiya S (2005) Quantitative post-mortem study of the hippocampus in chronic epilepsy: seizures do not inevitably cause neuronal loss. Brain 128(Pt 6):1344–1357. https://doi.org/10.1093/brain/awh475

    Article  PubMed  Google Scholar 

  30. Benedek G, Pereny J, Kovacs G, Fischer-Szatmari L, Katoh YY (1997) Visual, somatosensory, auditory and nociceptive modality properties in the feline suprageniculate nucleus. Neuroscience 78(1):179–189

    Article  CAS  Google Scholar 

  31. Paroczy Z, Nagy A, Markus Z, Waleszczyk WJ, Wypych M, Benedek G (2006) Spatial and temporal visual properties of single neurons in the suprageniculate nucleus of the thalamus. Neuroscience 137(4):1397–1404. https://doi.org/10.1016/j.neuroscience.2005.10.068

    Article  CAS  PubMed  Google Scholar 

  32. Eordegh G, Nagy A, Berenyi A, Benedek G (2005) Processing of spatial visual information along the pathway between the suprageniculate nucleus and the anterior ectosylvian cortex. Brain Res Bull 67(4):281–289. https://doi.org/10.1016/j.brainresbull.2005.06.036

    Article  PubMed  Google Scholar 

  33. Hicks TP, Stark CA, Fletcher WA (1986) Origins of afferents to visual suprageniculate nucleus of the cat. J Comp Neurol 246(4):544–554. https://doi.org/10.1002/cne.902460410

    Article  CAS  PubMed  Google Scholar 

  34. Hu Y, Mi X, Xu X, Fang W, Zeng K, Yang M, Li C, Wang S, Li M, Wang X (2015) The brain activity in Brodmann area 17: a potential bio-marker to predict patient responses to antiepileptic drugs. PLoS One 10(10):e0139819. https://doi.org/10.1371/journal.pone.0139819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo C, Ferreira D, Fink K, Westman E, Granberg T (2019) Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. Eur Radiol 29(3):1355–1364. https://doi.org/10.1007/s00330-018-5710-x

    Article  PubMed  Google Scholar 

  36. Su JH, Thomas FT, Kasoff WS, Tourdias T, Choi EY, Rutt BK, Saranathan M (2019) Thalamus optimized multi atlas segmentation of thalamic nuclei from structural MRI. Neuroimage 194:272–282. https://doi.org/10.1016/j.neuroimage.2019.03.021

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Min Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HJ., Seo, S.A. & Park, K.M. Quantification of thalamic nuclei in patients diagnosed with temporal lobe epilepsy and hippocampal sclerosis. Neuroradiology 62, 185–195 (2020). https://doi.org/10.1007/s00234-019-02299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-019-02299-6

Keywords

Navigation