Skip to main content
Log in

Diffusion of methane in high-silica CHA zeolite

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Diffusivity of methane in CHA-type zeolite (Si/Al = 160) was investigated by uptake rate method using a volumetric adsorption setup. The methane diffusivities were measured over a range of temperature (298-393 K) and pressure (0-0.9 bar) to study the effect of temperature and pressure on the diffusion coefficients. The results showed that the diffusivities decrease with pressure while they increase with increase in temperature. Furthermore, activation energy of diffusion decreases with pressure. The limiting values of activation energy and diffusivity of methane (at 298 K) at p = 0 (zero loading) were estimated to be 18.0 kJ/mol and ~3.2 × 10−13 m2/s, respectively. The results were compared with the diffusivities of CH4 in 12-, 10- and 8-MR zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C0 :

initial loading of the zeolite particles, (mol/kg)

D:

diffusivity, (m2/s)

D :

diffusivity at infinite temperature, (m2/s)

E:

activation energy of diffusion, (kJ mol-1)

m* :

mass of adsorptive in storage vessel prior to adsorption, (mol)

mf :

mass of adsorptive in gas phase, (mol)

mt :

mass adsorbed on the adsorbent at time t, (mol/kg)

m :

mass adsorbed at the equilibrium (t→∞), (mol/kg)

M:

molar mass of adsorptive gas, (kg/kmol)

p:

pressure of adsorptive gas, (bar)

ri :

radius of adsorbents particle, (m)

R:

universal gas constant, (83.14 cm3 bar mol-1 K-1)

t:

time, (s)

T:

absolute temperature, (K)

VAC :

volume of adsorption chamber, (cm3)

VSV :

volume of storage vessel, (cm3)

VsHe :

volume of a (porous) sorbent measured by helium expansion experiments, (cm3)

wi :

weight fraction of the particles of radius ri, (-)

Z:

gas compressibility factor, (-)

σ2 :

variance of a measurable quantity, (unit2)

References

  1. Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM (2012) Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J Am Chem Soc 134(4):1970–1973

    Article  Google Scholar 

  2. Shang J, Li G, Singh R, Xiao P, Danaci D, Liu JZ, Webley PA (2014) Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: a combination of van der Waals density functional theory calculations and experiment study. J Chem Phys 140(8):084705

    Article  Google Scholar 

  3. Maghsoudi H, Soltanieh M, Bozorgzadeh H, Mohamadalizadeh A (2013) Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption 19(5):1045–1053

    Article  Google Scholar 

  4. Li S, Martinek JG, Falconer JL, Noble RD, Gardner TQ (2005) High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind Eng Chem Res 44(9):3220–3228

    Article  Google Scholar 

  5. Venna SR, Carreon MA (2011) Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir 27(6):2888–2894

    Article  Google Scholar 

  6. Kosinov N, Auffret C, Gücüyener C, Szyja BM, Gascon J, Kapteijn F, Hensen EJ (2014) High flux high-silica SSZ-13 membrane for CO2 separation. J Mater Chem A 2(32):13083–13092

    Article  Google Scholar 

  7. Maghsoudi H, Soltanieh M (2014) Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. J Membr Sci 470:159–165

    Article  Google Scholar 

  8. Wu T, Diaz MC, Zheng Y, Zhou R, Funke HH, Falconer JL, Noble RD (2015) Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes. J Membr Sci 473:201–209

    Article  Google Scholar 

  9. Krishna R, Van Baten J, Garcia-Perez E, Calero S (2006) Diffusion of CH4 and CO2 in MFI, CHA and DDR zeolites. Chem Phys Lett 429(1-3):219–224

    Article  Google Scholar 

  10. Beerdsen E, Dubbeldam D, Smit B (2006) Loading dependence of the diffusion coefficient of methane in nanoporous materials. J Phys Chem B 110(45):22754–22772

    Article  Google Scholar 

  11. Jee SE, Sholl DS (2009) Carbon dioxide and methane transport in DDR zeolite: insights from molecular simulations into carbon dioxide separations in small pore zeolites. J Am Chem Soc 131(22):7896–7904

    Article  Google Scholar 

  12. Demontis P, Fois ES, Suffritti GB, Quartieri S (1990) Molecular dynamics studies on zeolites. 4. Diffusion of methane in silicalite. J Phys Chem 94(10):4329–4334

    Article  Google Scholar 

  13. Garcia-Sanchez A, Dubbeldam D, Calero S (2010) Modeling adsorption and self-diffusion of methane in LTA zeolites: the influence of framework flexibility. J Phys Chem C 114(35):15068–15074

    Article  Google Scholar 

  14. Zimmermann NE, Jakobtorweihen S, Beerdsen E, Smit B, Keil FJ (2007) In-depth study of the influence of host− framework flexibility on the diffusion of small gas molecules in one-dimensional zeolitic pore systems. J Phys Chem C 111(46):17370–17381

    Article  Google Scholar 

  15. Vidoni A, Ruthven D (2012) Diffusion of methane in DD3R zeolite. Microporous Mesoporous Mater 159:57–65

    Article  Google Scholar 

  16. Yucel H, Ruthven DM (1980) Diffusion in 4A zeolite. Study of the effect of crystal size. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 76:60–70

    Google Scholar 

  17. Mohr R, Vorkapic D, Rao M, Sircar S (1999) Pure and binary gas adsorption equilibria and kinetics of methane and nitrogen on 4A zeolite by isotope exchange technique. Adsorption 5(2):145–158

    Article  Google Scholar 

  18. Yucel H, Ruthven DM (1980) Diffusion in 5A zeolite. Study of the effect of crystal size. J Chem Soc Faraday Trans 1 Phys Chemi Condens Phases 76:71–83

    Google Scholar 

  19. Caro J, Hǒcevar S, Kärger J, Riekert L (1986) Intracrystalline self-diffusion of H2O and CH4 in ZSM-5 zeolites. Zeolites 6(3):213–216

    Article  Google Scholar 

  20. Silva JA, Schumann K, Rodrigues AE (2012) Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater 158:219–228

    Article  Google Scholar 

  21. Lauerer A, Binder T, Haase J, Kärger J, Ruthven D (2015) Diffusion of propene in DDR crystals studied by interference microscopy. Chem Eng Sci 138:110–117

    Article  Google Scholar 

  22. Pourmahdi Z, Maghsoudi H (2017) Adsorption isotherms of carbon dioxide and methane on CHA-type zeolite synthesized in fluoride medium. Adsorption 23(6):799–807

    Article  Google Scholar 

  23. Keller JU, Staudt R (2005) Gas adsorption equilibria: experimental methods and adsorptive isotherms. Springer Science & Business Media

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafez Maghsoudi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsoudi, H., Nozari, V. & Zamzami, S.R. Diffusion of methane in high-silica CHA zeolite. Heat Mass Transfer 55, 1619–1625 (2019). https://doi.org/10.1007/s00231-018-02547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-02547-0

Navigation