Skip to main content
Log in

Ratiometric electrochemiluminescence sensing and intracellular imaging of ClO via resonance energy transfer

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemiluminescence resonance energy transfer (ECL-RET) is a versatile signal transduction strategy widely used in the fabrication of chem/biosensors. However, this technique has not yet been applied in visualized imaging analysis of intracellular species due to the insulating nature of the cell membrane. Here, we construct a ratiometric ECL-RET analytical method for hypochlorite ions (ClO) by ECL luminophore, with a luminol derivative (L-012) as the donor and a fluorescence probe (fluorescein hydrazide) as the acceptor. L-012 can emit a strong blue ECL signal and fluorescein hydrazide has negligible absorbance and fluorescence signal in the absence of ClO. Thus, the ECL-RET process is turned off at this time. In the presence of ClO, however, the closed-loop hydrazide structure in fluorescein hydrazide is opened via specific recognition with ClO, accompanied with intensified absorbance and fluorescence signal. Thanks to the spectral overlap between the ECL spectrum of L-012 and the absorption spectrum of fluorescein, the ECL-RET effect is gradually recovered with the addition of ClO. Furthermore, the ECL-RET system has been successfully applied to image intracellular ClO. Although the insulating nature of the cell itself can generate a shadow ECL pattern in the cellular region, extracellular ECL emission penetrates the cell membrane and excites intracellular fluorescein generated by the reactions between fluorescein hydrazide and ClO. The cell imaging strategy via ECL-RET circumvents the blocking of the cell membrane and enables assays of intracellular species. The importance of the ECL-RET platform lies in calibrating the fluctuation from the external environment and improving the selectivity by using fluorescent probes. Therefore, this ratiometric ECL sensor has shown broad application prospects in the identification of targets in clinical diagnosis and environmental monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dou K, Fu Q, Chen G, Yu F, Liu Y, Cao Z, et al. A novel dual-ratiometric-response fluorescent probe for SO2/ClO- detection in cells and in vivo and its application in exploring the dichotomous role of SO2 under the ClO- induced oxidative stress. Biomaterials. 2017;133:82–93.

    Article  CAS  PubMed  Google Scholar 

  2. Liu L, Zhu G, Zeng W, Lv B, Yi Y. Highly sensitive and selective “off-on” fluorescent sensing platform for ClO- in water based on silicon quantum dots coupled with nanosilver. Anal Bioanal Chem. 2019;411(8):1561–8.

    Article  CAS  PubMed  Google Scholar 

  3. Fang X, Jin X, Ma X, Guan L, Chen W, She M. Rational construction of deep-red fluorescent probe for rapid detection of HClO and its application in bioimaging and paper-based sensing. Analytical and Bioanalytical Chemistry. 2022;414(19):5887–97.

    Article  CAS  PubMed  Google Scholar 

  4. Long Y, Zhou J, Yang MP, Liu XJ, Zhang M, Yang BQ. Highly selective, sensitive and naked-eye fluorescence probes for the direct detection of hypochlorite anion and their application in biological environments. Sensors and Actuators B-Chemical. 2016;232:327–35.

    Article  CAS  Google Scholar 

  5. Zhan Y, Luo F, Guo L, Qiu B, Lin Y, Li J, et al. Preparation of an efficient ratiometric fluorescent nanoprobe (m-CDs@[Ru(bpy)3]2+) for visual and specific detection of hypochlorite on site and in living cells. Acs Sensors. 2017;2(11):1684–91.

    Article  CAS  PubMed  Google Scholar 

  6. He Z, Zhu J, Li X, Weng G-J, Li J-J, Zhao J-W. Au@Ag nanopencil with Au tip and Au@Ag rod: multimodality plasmonic nanoprobe based on asymmetric etching for the detection of SCN- and ClO-. Small. 2023;19(38):2302302.

    Article  CAS  Google Scholar 

  7. Cheng S, Li A, Pan X, Wang H, Zhang C, Li J, et al. A near-infrared fluorescent probe for highly specific and ultrasensitive detection of hypochlorite ions in living cells. Anal Bioanal Chem. 2021;413(17):4441–50.

    Article  CAS  PubMed  Google Scholar 

  8. Wu L, Qi S, Liu Y, Wang X, Zhu L, Yang Q, et al. A novel ratiometric fluorescent probe for differential detection of HSO3- and ClO- and application in cell imaging and tumor recognition. Anal Bioanal Chem. 2021;413(4):1137–48.

    Article  CAS  PubMed  Google Scholar 

  9. Dai Y, Zhan Z, Chai L, Zhang L, Guo Q, Zhang K, et al. A two-photon excited near-infrared iridium(III) complex for multi-signal detection and multimodal imaging of hypochlorite. Anal Chem. 2021;93(10):4628–34.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, Yu X, Liu X, Zhang D, Li H, Zhou H, et al. ClO- induced dual-excitation fluorescent probes responding to diverse testing modes with ratio methodology. Anal Chem. 2023;95(18):7170–7.

    Article  CAS  PubMed  Google Scholar 

  11. Senol AM, Onganer Y. A novel “turn-off” fluorescent sensor based on cranberry derived carbon dots to detect iron (III) and hypochlorite ions. Journal of Photochemistry and Photobiology a-Chemistry. 2022;424: 113655.

    Article  CAS  Google Scholar 

  12. Tang J, Zhu G, Li P, Zhang P, Peng F, Meng F. Novel recognition mechanism based on oxidative addition of Pt(II) complex-based luminescent probes for hypochlorite ion detection. Analyst. 2021;146(18):5691–703.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Sharma E, Vashisht D, Thakur V, Vashisht A, Mehta SK, Singh K. Graphene quantum dots functionalized with bovine serum albumin for sensing of hypochlorite ions. Mater Chem Phys. 2021;273: 125088.

    Article  CAS  Google Scholar 

  14. Watanabe T, Ishii T, Yoshimura Y, Nakazawa H. Determination of chlorine dioxide using 4-aminoantipyrine and phenol by flow injection analysis. Anal Chim Acta. 1997;341(2–3):257–62.

    Article  CAS  Google Scholar 

  15. Shriver-Lake LC, Zabetakis D, Dressick WJ, Stenger DA, Trammell SA. Paper-based electrochemical detection of chlorate Sensors. 2018;18(2):328.

    PubMed  Google Scholar 

  16. Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annual Rev. 2005;11:227–56.

    Article  CAS  Google Scholar 

  17. Belotti M, El-Tahawy MMT, Yu L-J, Russell IC, Darwish N, Coote ML, et al. Luciferase-free luciferin electrochemiluminescence Angewandte Chemie-International Edition. 2022;61(46): e202209670.

    Article  CAS  PubMed  Google Scholar 

  18. Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence loss in photobleaching. Angewandte Chemie-International Edition. 2021;60(14):7686–90.

    Article  CAS  PubMed  Google Scholar 

  19. Wei Y, Zhang Y, Pan J, Chen T, Xing X, Zhang W, et al. Plasmon-enhanced electrochemiluminescence at the single-nanoparticle level. Angewandte Chemie-International Edition. 2023;62(2): e202214103.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang XM, Lu WF, Ma C, Wang T, Zhu JJ, Zare RN, et al. Insights into electrochemiluminescence dynamics by synchronizing real-time electrical, luminescence, and mass spectrometric measurements. Chem Sci. 2022;13(21):6244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li HD, Zhou H, Zhang T, Zhang ZC, Zhao GY, Wang CY. Electrocatalytic generation of cathodic luminol electrochemiluminescence with carbonized polydopamine nanotubes at a low positive potential. Acs Sustainable Chemistry & Engineering. 2022;10(31):10361–8.

    Article  CAS  Google Scholar 

  22. Lin L-H, Wang J-Y, You C-Y, Qiu L-H, Lin J-S, Zhang F-L, et al. Shell-isolated nanoparticle-enhanced electrochemiluminescence. Small. 2022;18(39):2203513.

    Article  CAS  Google Scholar 

  23. Xi M, Wu Z, Luo Z, Ling L, Xu W, Xiao R, et al. Water activation for boosting electrochemiluminescence. Angewandte Chemie-International Edition. 2023;62: e202302166.

    Article  CAS  PubMed  Google Scholar 

  24. Gu W, Wang H, Jiao L, Wu Y, Chen Y, Hu L, et al. Single-atom iron boosts electrochemiluminescence. Angewandte Chemie-International Edition. 2020;59(9):3534–8.

    Article  CAS  PubMed  Google Scholar 

  25. Huang W, Hu G-B, Yao L-Y, Yang Y, Liang W-B, Yuan R, et al. Matrix coordination-induced electrochemiluminescence enhancement of tetraphenylethylene-based hafnium metal-organic framework: an electrochemiluminescence chromophore for ultrasensitive electrochemiluminescence sensor construction. Anal Chem. 2020;92(4):3380–7.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu W, Dong J, Ruan G, Zhou Y, Feng J. Quantitative single-molecule electrochemiluminescence bioassay. Angewandte Chemie-International Edition. 2023;62: e202214419.

    Article  CAS  PubMed  Google Scholar 

  27. Han D, Goudeau B, Lapeyre V, Ravaine V, Jiang D, Fang D, et al. Enhanced electrochemiluminescence at microgel-functionalized beads. Biosens Bioelectron. 2022;216: 114640.

    Article  CAS  PubMed  Google Scholar 

  28. Shen Y, Gao X, Lu H-J, Nie C, Wang J. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coord Chem Rev. 2023;476: 214927.

    Article  CAS  Google Scholar 

  29. Li H, Zhang T, Zhou H, Zhang Z, Liu M, Wang C. Enhanced electrochemiluminescence in a microwell bipolar electrode array prepared with an optical fiber bundle. ChemElectroChem. 2021;8(8):1473–7.

    Article  CAS  Google Scholar 

  30. Jiang J, Lin X, Ding D, Diao G. Graphitic-phase carbon nitride-based electrochemiluminescence sensing analyses: recent advances and perspectives. RSC Adv. 2018;8(35):19369–80.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji Z, Shu Y, Xu Q, Hu X. Ultrasensitive electrochemiluminescence determination of trace Ag ions based on the signal amplification caused by its catalytic effect on Mn(II) oxidation using graphite catheter as electrode. Talanta. 2018;187:188–92.

    Article  CAS  PubMed  Google Scholar 

  32. Xue JJ, Zhang ZY, Zheng FF, Xu Q, Xu JC, Zou GZ, et al. Efficient solid-state electrochemiluminescence from high-quality perovskite quantum dot films. Anal Chem. 2017;89(16):8212–6.

    Article  CAS  PubMed  Google Scholar 

  33. Cai WR, Zeng HB, Xue HG, Marks RS, Cosnier S, Zhang XJ, et al. Enhanced electrochemiluminescence of porphyrin-based metal-organic frameworks controlled via coordination modulation. Anal Chem. 2020;92(2):1916–24.

    Article  CAS  PubMed  Google Scholar 

  34. Feng QM, Shen YZ, Li MX, Zhang ZL, Zhao W, Xu JJ, et al. Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)32+ for microRNA detection. Anal Chem. 2016;88(1):937–44.

    Article  CAS  PubMed  Google Scholar 

  35. Chu Y, Han T, Deng A, Li L, Zhu J-J. Resonance energy transfer in electrochemiluminescent and photoelectrochemical bioanalysis. Trac-Trends in Analytical Chemistry. 2020;123: 115745.

    Article  CAS  Google Scholar 

  36. Lu H-J, Xu J-J, Zhou H, Chen H-Y. Recent advances in electrochemiluminescence resonance energy transfer for bioanalysis: fundamentals and applications. Trac-Trends in Analytical Chemistry. 2020;122: 115746.

    Article  CAS  Google Scholar 

  37. Zhang Z, Ma C, Xu Q, Zhu J-J. Recent progress in electrochemiluminescence microscopy analysis of single cells. Analyst. 2022;147(13):2884–94.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Zhou Y, Dong J, Zhao P, Zhang J, Zheng M, Feng J. Imaging of single bacteria with electrochemiluminescence microscopy. J Am Chem Soc. 2023;145(16):8947–53.

    Article  CAS  PubMed  Google Scholar 

  39. Lu Y, Huang X, Wang S, Li B, Liu B. Nanoconfinement-enhanced electrochemiluminescence for in situ imaging of single biomolecules. Acs Nano. 2023;17(4):3809–17.

    Article  CAS  PubMed  Google Scholar 

  40. Descamps J, Colin C, Tessier G, Arbault S, Sojic N. Ultrasensitive imaging of cells and sub-cellular entities by electrochemiluminescence. Angew Chem Int Ed. 2023;62(16): e202218574.

    Article  CAS  Google Scholar 

  41. Cui C, Jin R, Jiang D, Zhang J, Zhu J. Visualization of an accelerated electrochemical reaction under an enhanced electric field. Research. 2021;2021:1742919.

  42. Zanut A, Fiorani A, Canola S, Saito T, Ziebart N, Rapino S, et al. Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance. Nat Commun. 2020;11(1):2668.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo W, Zhou P, Sun L, Ding H, Su B. Microtube electrodes for imaging the electrochemiluminescence layer and deciphering the reaction mechanism. Angew Chem Int Ed. 2021;60(4):2089–93.

    Article  CAS  Google Scholar 

  44. Fiorani A, Han D, Jiang D, Fang D, Paolucci F, Sojic N, et al. Spatially resolved electrochemiluminescence through a chemical lens. Chem Sci. 2020;11(38):10496–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem Sci. 2014;5(6):2568–72.

    Article  CAS  Google Scholar 

  46. Ma C, Wei H-F, Wang M-X, Wu S, Chang Y-C, Zhang J, et al. Hydrogen evolution reaction monitored by electrochemiluminescence blinking at single-nanoparticle level. Nano Lett. 2020;20(7):5008–16.

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Dong J, Xu Y, Zhang Z, Feng J. Operando imaging of chemical activity on gold plates with single-molecule electrochemiluminescence microscopy. Angew Chem Int Ed. 2022;61(14):e202200187.

  48. Zhu H, Jin R, Chang Y-C, Zhu J-J, Jiang D, Lin Y, et al. Understanding the synergistic oxidation in dichalcogenides through electrochemiluminescence blinking at millisecond resolution. Adv Mater. 2021;33:2105039.

    Article  CAS  Google Scholar 

  49. Dong J, Lu Y, Xu Y, Chen F, Yang J, Chen Y, et al. Direct imaging of single-molecule electrochemical reactions in solution. Nature. 2021;596(7871):244–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Zhu W, Dong J, Ruan G, Zhou Y, Feng J. Quantitative single-molecule electrochemiluminescence bioassay. Angew Chem Int Ed. 2023;62(7): e202214419.

    Article  CAS  Google Scholar 

  51. Liu S, Yuan H, Bai H, Zhang P, Lv F, Liu L, et al. Electrochemiluminescence for electric-driven antibacterial therapeutics. J Am Chem Soc. 2018;140(6):2284–91.

    Article  CAS  PubMed  Google Scholar 

  52. Chen M-M, Xu C-H, Zhao W, Chen H-Y, Xu J-J. Single cell imaging of electrochemiluminescence-driven photodynamic therapy. Angewandte Chemie-International Edition. 2022;61(16): e202117401.

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Wang H, Ma Q, Wang Y, Wang C, Qin D, Shan D, et al. Resonance energy transfer based electrochemiluminescence and fluorescence sensing of riboflavin using graphitic carbon nitride quantum dots. Anal Chim Acta. 2017;973:34–42.

    Article  CAS  PubMed  Google Scholar 

  54. Yan F, Zhang H, Li X, Sun X, Jiang Y, Cui Y. A fluorescein-coumarin based ratiometric fluorescent probe for detecting hydrazine and its real applications in cells imaging. Talanta. 2021;223: 121779.

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Yang X, Zhang D, Liu Y, Tang J, Li Y, et al. A fluorescein-based “turn-on” fluorescence probe for hypochlorous acid detection and its application in cell imaging. Sensors and Actuators B-Chemical. 2018;265:84–90.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China grants 22374125, 22201244, and 22076161; China Postdoctoral Science Foundation (2022M722688); Yangzhou University Interdisciplinary Research Foundation for Chemistry Discipline of Targeted Support yzuxk202009; Foundation of State Key Laboratory of Analytical Chemistry for Life Science grant No. SKLACLS2201; Lvyangjinfeng Talent Program of Yangzhou; Talent Support Program of Yangzhou University; The Open Project Program of Jiangsu Key Laboratory of Zoonosis (No. R2013); and The project funded by the PAPD and TAPP.

Author information

Authors and Affiliations

Authors

Contributions

C.M. and Q.X. conceived the study. Y.Z., C.M., and Z.Z. performed the experiments. C.M. and Y.Z. built the microscope setup. X.C., Z.J., L.N.Z., and C.M. advised the manuscript. C.M. and Q.X. designed the experiments. Y.Z. and C.M. analyzed the data. Y.Z., C.M., and Q.X. wrote the paper.

Corresponding authors

Correspondence to Cheng Ma or Qin Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Emerging Trends in Electrochemical Analysis with guest editors Sabine Szunerits, Wei Wang, and Adam T. Woolley.

Cheng Ma and Yujing Zhu contributed equally to this work.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Zhu, Y., Zhang, Z. et al. Ratiometric electrochemiluminescence sensing and intracellular imaging of ClO via resonance energy transfer. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05236-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05236-6

Keywords

Navigation