Skip to main content
Log in

The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that l-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active d-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggarwal A, Misro MM, Maheshwari A, Sehgal N, Nandan D (2010) N-acetylcysteine counteracts oxidative stress and prevents hCG-induced apoptosis in rat Leydig cells through down regulation of caspase-8 and JNK. Mol Reprod Dev 77(10):900–909

    Article  CAS  PubMed  Google Scholar 

  • Ahmed NK, Martin LA, Watts LM, Palmer J, Thornburg L, Prior J et al (1992) Peptidyl fluoromethyl ketones as inhibitors of cathepsin B. Implication for treatment of rheumatoid arthritis. Biochem Pharmacol 44(6):1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Angliker H, Wikstrom P, Rauber P, Shaw E (1987) The synthesis of lysyifluoromethanes and their properties as inhibitors of trypsin, plasmin and cathepsin B. Biochem J 241:871–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoshiba K, Tamaoki J, Nagai A (2001) Acute cigarette smoke exposure induces apoptosis of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 281:1392–1401

    Article  Google Scholar 

  • Apostolova N, Gomez-Sucerquia LJ, Moran A, Alvarez A, Blas-Garcia A, Esplugues A (2010) Enhanced oxidative stress and increased mitochondrial mass during efavirenz-induced apoptosis in human hepatic cells. Br J Pharmacol 160:2069–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW et al (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9(3):252–263

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Dikalov S, Griendling KK, Harrison DG (2007) Detection of reactive oxygen species and nitric oxide in vascular cells and tissues. Methods in Molecular Medicine 139:293–311

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Jones DP (1999) Mitochondrial redox signaling during apoptosis. J Bioenerg Biomembr 31:327–334

    Article  CAS  PubMed  Google Scholar 

  • Cazanave S, Berson A, Haouzi D, Vadrot N, Fau D, Grodet A et al (2007) High hepatic glutathione stores alleviate Fas-induced apoptosis in mice. J Hepatol 46:858–868

    Article  CAS  PubMed  Google Scholar 

  • Chao YIY, Ferrari G, Greene LA (1995) N-acetylcysteine-promoted survival of PC12 cells is glutathione-independent but transcription-dependent. J Biol Chem 270(45):26827–26832

    Article  Google Scholar 

  • Chen J, Rogers SC, Kavdia M (2013) Analysis of kinetics of dihydroethidium fluorescence with superoxide using xanthine oxidase and hypoxanthine assay. Ann Biomed Eng 41(2):327–337

    Article  CAS  PubMed  Google Scholar 

  • Demuth H (1990) Recent developments in inhibiting cysteine and serine proteases. J Enzym Inhib 3:249–278

    Article  CAS  PubMed  Google Scholar 

  • Deneka SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36:151–180

    Article  Google Scholar 

  • Esser RE, Angelo RA, Murphey MD, Watts LM, Thornburg LP, Palmer J et al (1993) Cysteine proteinase inhibitors decrease articular cartilage and bone destruction in chronic inflammatory arthritis. Arthritis Rheum 37:236–247

    Article  Google Scholar 

  • Fabian Z, O’Brien P, Pajecka K, Fearnhead HO (2009) TPCK-induced apoptosis and labelling of the largest subunit of RNA polymerase II in Jurkat cells. Apoptosis 14:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Zhang HQ, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30:1–12

    Article  CAS  Google Scholar 

  • Franco R, Panayiotidis MI, Cidlowski JA (2007) Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation. J Biol Chem 282:30452–30465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen C, Kiess Y, Debatin KM (2004) A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells. Cell Death Differ 11:S73–S85

    Article  CAS  PubMed  Google Scholar 

  • Gillibert, M., Dehry, Z., Terrier, M., El Benna, J., and Lederer, F. (2005). Another biological effect of tosylphenylalanylchloromethane (TPCK): it prevents p47 phox phosphorylation and translocation upon neutrophil stimulation. BiochemJ, 386: 549–556

  • Gmunder H, Roth HS, Eck HP, Gallas H, Mihm S, Droege W (1990) Interleukin-2 mRNA expression, lymphokine production and DNA synthesis in glutathione-depleted T cells. Cell Immunol 130:520–528

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW (1982) Mechanism of action, metabolism and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 257:13704–13712

    CAS  PubMed  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-N-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    CAS  PubMed  Google Scholar 

  • Guha P, Dey A, Sen R, Chatterjeeb M, Chattopadhyay S, Bandyopadhyay SK (2010) Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. J Pharmacol Exp Ther 336(1):206–214

    Article  PubMed  Google Scholar 

  • Ha K-H, Byun M-S, Choi J, Jeong J, Lee K-J, Jue D-M (2009) N-tosyl-L-phenylalanine chloromethyl ketone inhibits NF-kB activation by blocking specific cysteine residues of IkB kinase B and p65/RelA. Biochemistry 48:7271–7278

    Article  CAS  PubMed  Google Scholar 

  • Hampton MB, Orrenius S (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414(3):552–556

    Article  CAS  PubMed  Google Scholar 

  • Heussler VT, Fernandez PC, Machado J Jr, Botteron C, Dobbelaere DAE (1999) N-acetylcysteine blocks apoptosis induced by N-a-tosyl-L-phenylalanine chloromethyl ketone in transformed T-cells. Cell Death Differ 6:342–350

    Article  CAS  PubMed  Google Scholar 

  • Jitkaew S, Trebinska A, Grzybowska E, Carlsson G, Nordstrom A, Lehtio J et al (2009) Nα-tosyl-L-phenylalanine chloromethyl ketone (TPCK) induces caspase-dependent apoptosis in transformed human B cell lines with transcriptional downregulation of anti-apoptotic HS1-associated protein X-1 (HAX-1). J Biol Chem 284:27827–27837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson VL, Ko SC, Holmstrom TH, Eriksson JE, Chow SC (2000) Effector caspases are dispensable for the early nuclear morphological changes during chemical-induced apoptosis. J Cell Sci 113(Pt 17):2941–2953

    CAS  PubMed  Google Scholar 

  • Jones DP, Maellaro E, Jiang S, Slater AFG, Orrenius S (1995) Effects of N-acetyl-L-cysteine on T-cell apoptosis are not mediated by increased cellular glutathione. Immunol Lett 45:205–209

    Article  CAS  PubMed  Google Scholar 

  • Kirkland RA, Franklin JL (2001) Evidence for redox regulation of cytochrome C release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. J Neurosci 21:1949–1963

    CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Vercesi AE (1998) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26(3/4):463–471

    Google Scholar 

  • Lawrence CP, Kadioglu A, Yang A-L, Coward WR, Chow SC (2006) The cethepsin B inhibitor, z-FA-FMK, inhibits human T cell proliferation in vitro and modulates host response to pneumococcal infection in vivo. J Immunol 177:3827–3836

    Article  CAS  PubMed  Google Scholar 

  • Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24:203–204

    Article  CAS  PubMed  Google Scholar 

  • Liow KY, Chow SC (2013) The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes. Toxicol Appl Pharmacol 272:559–567

    Article  CAS  PubMed  Google Scholar 

  • Mailloux RJ, Harper ME (2012) Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol Metab 23(9):451–458

    Article  CAS  PubMed  Google Scholar 

  • Mailloux RJ, McBride SL, Harper M-E (2013) Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 38(12):592–602

    Article  CAS  PubMed  Google Scholar 

  • Martin HL, Teismann P (2009) Glutathione—a review on its role and significance in Parkinson’s disease. The Journal of the Federation of American Societies for Experimental Biology 23:3263–3272

    Article  CAS  Google Scholar 

  • Meister A, Griffith OW (1979) Effects of methionine sulfoximine analogs on the synthesis of glutamine and glutathione: possible chemotherapeutic implications. Cancer Treatment Reports 63:1115–1121

    CAS  PubMed  Google Scholar 

  • Merad-Boudia M, Nicole A, Santiard-Baron D, Saille C, Ceballos-Picot I (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease. Biochem Pharmacol 56:645–655

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism and Related Disorders 8:385–387

    Article  PubMed  Google Scholar 

  • Nakagawa S, Arai Y, Mazda O, Kishida T, Takahashi KA, Sakao K et al (2010) N-acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis. J Orthop Res 28(2):156–163

    CAS  PubMed  Google Scholar 

  • Nobel CS, Burgess DH, Zhivotovsky B, Burkitt MJ, Orrenius S, Slater AF (1997) Mechanism of dithiocarbamate inhibition of apoptosis: thiol oxidation by dithiocarbamate disulfides directly inhibits processing of the caspase-3 proenzyme. Chem Res Toxicol 10:636–643

    Article  CAS  PubMed  Google Scholar 

  • Osseni RA, Debbasch C, Christen MO, Rat P, Warnet JM (1999) Tacrine-induced reactive oxygen species in a human liver cell line: the role of anethole dithiolethione as a scavenger. Toxicol in Vitro 13:683–688

    Article  CAS  PubMed  Google Scholar 

  • Otto HH, Schirmeister T (1997) Cysteine proteases and their inhibitors. Chem Rev 97:133–171

    Article  CAS  PubMed  Google Scholar 

  • Pace V, Castoldi L, Pregnolato M (2013) α-Amino-α′-halomethylketones: synthetic methodologies and pharmaceutical applications as serine and cysteine protease inhibitors. Mini Reviews in Medicinal Chemistry 13:988–996

    Article  CAS  PubMed  Google Scholar 

  • Perez-G M, Cortes JR, Rivas MD, Masa F, Zamorano J (2008) Treatment of cells with n-alpha-tosyl-l-phenylalanine-chloromethyl ketone induces the proteolytic loss of STAT6 transcription factor. MolImmunol 45:3896–3901

    CAS  Google Scholar 

  • Pong S-S, Nuss DL, Koch G (1975) Inhibition of initiation of protein synthesis in mammalian tissue culture cells by L-1-tosylamido-2-phenylethyl chloromethyl ketone. J Biol Chem 250:240–245

    CAS  PubMed  Google Scholar 

  • Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102(12):4639–4750

    Article  CAS  PubMed  Google Scholar 

  • Powers JC, Gupton BF, Harley AD, Nishino N, Whitley RJ (1977) Specificity of porcine pancreatic elastase, human leukocyte elastase and cathepsin G. Inhibition with peptide chloromethyl ketones. Biochim Biophys Acta 485:156–166

    Article  CAS  PubMed  Google Scholar 

  • Rajah T, Chow SC (2014) The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress. Toxicol Appl Pharmacol 278(2):100–106

    Article  CAS  PubMed  Google Scholar 

  • Ranga V, Kleinerman J, Ip MPC, Sorensen J, Powers JC (1981) Effects of oligopeptide chloromethylketone administered after elastase: renal toxicity and lack of prevention of experimental emphysema. Am Rev Respir Dis 124:613–618

    CAS  PubMed  Google Scholar 

  • Rasnick D (1985) Synthesis of peptide fluoromethyl ketones and the inhibition of human cathepsin B. Anal Biochem 149(2):461–465

    Article  CAS  PubMed  Google Scholar 

  • Rauber P, Angliker H, Walker B, Shaw E (1986) The synthesis of peptidylfluoromethanes and their properties as inhibitors of serine proteinases and cysteine proteinases. Biochem J 239:633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice GC, Bump EA, Shrieve DC, Lee W, Kovacs M (1986) Quantitative analysis of cellular glutathione by flow cytometry utilizing monochlorobimane: some applications to radiation and drug resistance in vitro and in vivo. Cancer Res 46:6105–6110

    CAS  PubMed  Google Scholar 

  • Rossman T, Norris C, Troll W (1974) Inhibition of macromolecular synthesis in Escherichia coli by protease inhibitors. J Biol Chem 249:3412–3417

    CAS  PubMed  Google Scholar 

  • Schoellmann G, Shaw E (1962) Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry 2(2):252–255

    Article  Google Scholar 

  • Schotte P, Schauvliege R, Janssens S, Beyaert R (2001) The cathepsin B inhibitor z-FA-FMK inhibits cytokine production in macrophages stimulated by lipopolysaccharide. J Biol Chem 276:21153–21157

    Article  CAS  PubMed  Google Scholar 

  • Smith HJ (1978) Perspectives in the design of small molecule enzyme inhibitors as useful drugs. J Theor Biol 73:531–538

    Article  CAS  PubMed  Google Scholar 

  • Steenvoorden DPT, Beijersbergen van Henegouwen GMJ (1998) Glutathione synthesis is not involved in protection by N-acetylcysteine against UVB-induced systemic immunosuppression in mice. Photochem Photobiol 68(1):97–100

    CAS  PubMed  Google Scholar 

  • Sun HL, Tsai AC, Pan SL, Ding QQ, Yamaguchi H, Lin CN et al (2009) EPOX inhibits angiogenesis by degradation of Mcl-1 through ERK inactivation. Clin Cancer Res 15(15):4904–4914

    Article  CAS  PubMed  Google Scholar 

  • Sun SY (2010) N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol Ther 9(2):109–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Noorden CJ, Smith RE, Rasnick D (1988) Cysteine proteinase activity in arthritic rat knee joints and the effects of a selective systemic inhibitor, z-Phe-AlaCH2F. J Rheumatol 15:1525–1535

    PubMed  Google Scholar 

  • Weis M, Schlegel J, Kass GEN, Holmstrîm TH, Peters I, Eriksson JE et al (1995) Cellular events in Fas/APO-1-mediated apoptosis in JURKAT T lymphocytes. Exp Cell Res 219:699–708

    Article  CAS  PubMed  Google Scholar 

  • Wispriyono B, Matsuoka M, Igisu H, Matsuno K (1998) Protection from cadmium cytotoxicity by N-acetylcysteine in LLC-PK1 cells. J Pharmacol Exp Ther 287:344–351

    CAS  PubMed  Google Scholar 

  • Young PR, Connors White AL, Dzido GA (1994) Kinetic analysis of the intracellular conjugation of monochlorobimane by IC-21 murine macrophage glutathione-S-transferase. Biochim Biophys Acta 1201:461–465

    Article  PubMed  Google Scholar 

  • Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20

    Article  CAS  PubMed  Google Scholar 

  • Zhang FJ, Lau SS, Monks TJ (2011) The cytoprotective effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis. Toxicol Sci 120(1):87–97

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the internal funding provided by Monash University Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sek C. Chow.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liow, K.Y., Chow, S.C. The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress. Naunyn-Schmiedeberg's Arch Pharmacol 391, 71–82 (2018). https://doi.org/10.1007/s00210-017-1436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1436-6

Keywords

Navigation