Skip to main content
Log in

Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Botrytis cinerea is a phytopathogenic fungus causing disease in a substantial number of economically important crops. In an attempt to identify putative fungal virulence factors, the two-dimensional gel electrophoresis (2-DE) protein profile from two B. cinerea strains differing in virulence and toxin production were compared. Protein extracts from fungal mycelium obtained by tissue homogenization were analyzed. The mycelial 2-DE protein profile revealed the existence of qualitative and quantitative differences between the analyzed strains. The lack of genomic data from B. cinerea required the use of peptide fragmentation data from MALDI-TOF/TOF and ESI ion trap for protein identification, resulting in the identification of 27 protein spots. A significant number of spots were identified as malate dehydrogenase (MDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The different expression patterns revealed by some of the identified proteins could be ascribed to differences in virulence between strains. Our results indicate that proteomic analysis are becoming an important tool to be used as a starting point for identifying new pathogenicity factors, therapeutic targets and for basic research on this plant pathogen in the postgenomic era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

MDH:

Malate dehydrogenase

PMF:

Peptide mass fingerprinting

2-DE:

Two-dimensional gel electrophoresis

References

  • Alderete JF, Millsap KW, Lehker MW, Benchimol M (2001) Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity. Cell Microbiol 3:359-370

    Article  PubMed  CAS  Google Scholar 

  • Asirvatham VS, Watson BS, Sumner LW (2002) Analytical and biological variances associated with proteomic studies of Medicago truncatula by two-dimensional polyacrylamide gel electrophoresis. Proteomics 2:960–968

    Article  PubMed  CAS  Google Scholar 

  • Beever RE, Weeds PL (2004) Botrytis taxonomy and genetic variation. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht

    Google Scholar 

  • Buttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Bruckner B, Tudzynski P (1994) Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Curr Genet May 25:445–450

    Article  CAS  Google Scholar 

  • Coley-Smith JR, Verhoheff K, Jarvis WR (1980) The biology of botrytis, London

  • Colmenares AJ, Aleu J, Durán-Patrón R, Collado IG, Hernández-Galán R (2002) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol May 28:997–1005

    Article  CAS  Google Scholar 

  • Collado IG, Aleu J, Hernández-Galán R, Durán-Patrón R (2000) Botrytis species: an intriguing source of metabolites with a wide range of biological activities. Structure chemistry and bioactivity of metabolites isolated from Botrytis species. Curr Org Chem 4:1261–1286

    Article  CAS  Google Scholar 

  • Davidson JA, Pande S, Bretag TW, Lidbeck KD, Krishna-Kishore G (2004) Biology and management of Botrytis spp. in legume crops. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht

    Google Scholar 

  • Deveze-Alvarez M, Garcia-Soto J, Martinez-Cadena G (2001) Glyceraldehyde-3-phosphate dehydrogenase is negatively regulated by ADP-ribosylation in the fungus Phycomyces blakesleeanus. Microbiology 147:2579–2584

    PubMed  CAS  Google Scholar 

  • Dik AJ, Wubben JP (2004) Epidemiology of Botrytis cinerea diseases in greenhouses. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht

    Google Scholar 

  • Droby S, Lichter A (2004) Post-harvest Botrytis infection: Etiology, development and management. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht

    Google Scholar 

  • Durán-Patrón R, Cantoral JM, Hernández-Galán R, Hanson JR, Collado IG (2004) The biodegradation of the phytotoxic metabolite botrydial by its parent organism, Botrytis cinerea. J Chem Res 441–443

    Google Scholar 

  • Ebstrup T, Saalbach G, Egsgaard H (2005) A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics 5:2839–2848

    Article  PubMed  CAS  Google Scholar 

  • Elmer PAG, Michailides TJ (2004) Epidemiology of Botrytis cinerea in orchad and vine crops. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht

    Google Scholar 

  • Fernández-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbú M, Camafeita LE, López JA, Cantoral JM, Jorrin J (2006) Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 6:S88–S96

    Article  PubMed  Google Scholar 

  • Fukumori F, Saint C (1997) Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1). J Bacteriol 179:399–408

    PubMed  CAS  Google Scholar 

  • Grinyer J, McKay M, Nevalainen H, Herbert BR (2004) Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Curr Genet 45:163–169

    Article  PubMed  CAS  Google Scholar 

  • Hernández R, Nombela C, Diez-Orejas R, Gil C (2004) Two-dimensional reference map of Candida albicans hyphal forms. Proteomics 4:374–382

    Article  PubMed  Google Scholar 

  • Jafri S, Urbanowski ML, Stauffer GV (1995) A mutation in the rpoA gene encoding the subunit of RNA polymerase that affects metE-metR transcription in Escherichia coli. J Bacteriol 177:524–529

    PubMed  CAS  Google Scholar 

  • Jorge I, Navarro RM, Lenz C, Ariza D, Porras C, Jorrín J (2005) The holm oak leaf proteome: analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics 5:222–234

    Article  PubMed  CAS  Google Scholar 

  • Jungblut PR, Hecker M (2004) Proteomics of microbial pathogens. Proteomics 4:2829–2830

    Article  CAS  Google Scholar 

  • Kaliman PA, Petrenko VV, Manandkhar SP, Bomko TV (1991) Activity of cytoplasmic NADP-dependent dehydrogenase in rat liver during induction of cytochrome P-450 by phenobarbital. Ukr Biokhim Zh Mar–Apr 63:52–58

    CAS  Google Scholar 

  • Kim ST, Yu S, Kim SG, Kim HJ, Kang SY, Hwang DH, Jang YS, Kang KY (2004) Proteome analysis of rice blast fungus Magnaporthe grisea proteome during appressorium formation. Proteomics 4:3579–3587

    Article  PubMed  CAS  Google Scholar 

  • Kubicek CP, Schreferl-Kunar G, Wöhrer W, Röhr M (1988) Evidence for a Cytplasmatic Pathway of Oxalate Biosynthesis in Aspergillus niger. Appl Environ Microbiol 54:633–637

    PubMed  CAS  Google Scholar 

  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F (2002) Mechanism of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58:876–888

    Article  PubMed  CAS  Google Scholar 

  • Lim D, Hains P, Walsh B, Bergquist P, Nevalainen H (2001) Proteins associated with the the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1:899–910

    Article  PubMed  CAS  Google Scholar 

  • Lyon GD, Goodman BA, Williamson B (2004) Botrytis cinerea perturbs redox processes as an attack strategy in plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht

    Google Scholar 

  • Manteau S, Abouna S, Lambert B, Legendre L (2003) Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol 43:359–366

    Article  CAS  Google Scholar 

  • Medina ML, Haynes PA, Breci L, Francisco WA (2005) Analysis of secreted proteins from Aspergillus flavus. Proteomics 5:3153–3161

    Article  PubMed  CAS  Google Scholar 

  • Nandakumar MP, Marten MR (2002) Comparison of lysis methods and preparation protocols for one- and two-dimensional electrophoresis of Aspergillus oryzae intracellular proteins. Electrophoresis 23:2216–2222

    Article  PubMed  CAS  Google Scholar 

  • Pancholi V, Chhatwal GS (2003) Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293:391–401

    Article  PubMed  CAS  Google Scholar 

  • Reino JL, Hernandez-Galan R, Duran-Patron R, Collado IG (2004) Virulence-toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea. J Phytopathol 152:563–566

    Article  CAS  Google Scholar 

  • Ruijter GJG, Bax M, Patel H, Flitter SJ, van de Vondervoort PJI, de Vries RP, vanKuyk PA, Visser J (2003) Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryotic Cell 2:690–698

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Wariishi H (2005) Development of a sample preparation method for fungal proteomics. FEMS Microbiol Lett 247:17–22

    Article  PubMed  CAS  Google Scholar 

  • Siewers V, Smedsgaard J, Tudzynski P (2004) The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea. Appl Environ Microbiol 70:3868–3876

    Article  PubMed  CAS  Google Scholar 

  • Siewers V, Viaud M, Jimenez-Teja D, Collado IG, Schulze Gronover C, Pradier J-M, Tudzynski B, Tudzynski P (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that Botrydial is a strain-specific virulence factor. Mol Plant Microbe Interac 18:602–612

    CAS  Google Scholar 

  • Staples RC, Mayer AM (1995) Putative virulence factors of Botrytis cinerea acting as a wound pathogen. FEMS Microbiol Lett 134:1–7

    Article  CAS  Google Scholar 

  • ten Have A, Mulder W, Visser J, van Kan J (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11:1009–1016

    PubMed  CAS  Google Scholar 

  • Vallejo I, Carbú M, Muñoz F, Rebordinos L, Cantoral JM (2002) Inheritance of chromosome-length polymorphisms in the phytopathogenic ascomycete Botryotinia fuckeliana (anam. Botrytis cinerea). Mycol Res 106:1075–1085

    Article  CAS  Google Scholar 

  • Vallejo I, Carbú M, Rebordinos L, Cantoral JM (2003) Virulence of Botrytis cinerea strains on two grapevine varieties in south-western Spain. Biologia 58:1067–1074

    Google Scholar 

  • van Kan JAL, van’t Klooster JW, Wagemakers CAM, Dees DCT, Vlugt-Bergmans vd (1997) Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of Gerbera and tomato. Mol Plant Microbe Interac 10:30–38

    Google Scholar 

  • Verhoeff K, Malathrakis NE, Williamson B (1992) Recent advances in Botrytis research. PUDOC Scientific, Wageningen

    Google Scholar 

  • Viaud M, Brunet-Simon A, Brygoo Y, Pradier J-M, Levis C (2003) Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol Microbiol 50:1451–1465

    Article  PubMed  CAS  Google Scholar 

  • Viaud MC, Balhadere PV, Talbot NJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14:917–930

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Cardenas ME, Cox GM, Perfect JR, Heitman J (2001) Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Reports 2:511–518

    Article  PubMed  CAS  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biology 1:reviews3003.3001–reviews3003.3009

    Google Scholar 

  • Witteveen CFB, Visser J (1995) Polyol pools in Aspergillus niger. FEMS Microbiol Lett 134:57–62

    Article  PubMed  CAS  Google Scholar 

  • Wubben JP, ten Have A, van Kan JAL, Visser J (2000) Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Curr Genet 37:152–157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research has been financed by the Spanish DGICYT (Project AGL2003-06480-C02-02). We thank Professor Isidro G. Collado (Department of Organic Chemistry, University of Cádiz, Spain) and the partners of AOSPLANT project for supplying the B. cinerea 1.11 strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Manuel Cantoral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Acero, F.J., Jorge, I., Calvo, E. et al. Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch Microbiol 187, 207–215 (2007). https://doi.org/10.1007/s00203-006-0188-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0188-3

Keywords

Navigation