Skip to main content
Log in

A Geometry for the Set of Split Operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We study the set \({\mathcal{X}}\) of split operators acting in the Hilbert space \({\mathcal{H}}\) :

$$\mathcal{X}=\{T\in \mathcal{B}(\mathcal{H}): N(T)\cap R(T)=\{0\} \ {\rm and} \ N(T)+R(T)=\mathcal{H}\}.$$

Inside \({\mathcal{X}}\), we consider the set \({\mathcal{Y}}\) :

$$\mathcal{Y}=\{T\in\mathcal{X}: N(T)\perp R(T)\}.$$

Several characterizations of these sets are given. For instance \({T\in\mathcal{X}}\) if and only if there exists an oblique projection \({Q}\) whose range is N(T) such that T + Q is invertible, if and only if T posseses a commuting (necessarilly unique) pseudo-inverse S (i.e. TS = ST, TST = T and STS = S). Analogous characterizations are given for \({\mathcal{Y}}\). Two natural maps are considered:

$${\bf q}:\mathcal{X} \to \mathbb{Q}:=\{{\rm oblique \ projections \ in} \, \mathcal{H} \}, \ {\bf q}(T)=P_{R(T)//N(T)}$$

and

$${\bf p}:\mathcal{Y} \to \mathbb{P}:=\{{\rm orthogonal \ projections \ in} \ \mathcal{H} \}, \ {\bf p}(T)=P_{R(T)}, $$

where \({P_{R(T)//N(T)}}\) denotes the projection onto R(T) with nullspace N(T), and P R(T) denotes the orthogonal projection onto R(T). These maps are in general non continuous, subsets of continuity are studied. For the map q these are: similarity orbits, and the subsets \({\mathcal{X}_{c_k}\subset \mathcal{X}}\) of operators with rank \({k<\infty}\), and \({\mathcal{X}_{F_k}\subset\mathcal{X}}\) of Fredholm operators with nullity \({k<\infty}\). For the map p there are analogous results. We show that the interior of \({\mathcal{X}}\) is \({\mathcal{X}_{F_0}\cup\mathcal{X}_{F_1}}\), and that \({\mathcal{X}_{c_k}}\) and \({\mathcal{X}_{F_k}}\) are arc-wise connected differentiable manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andruchow, E., Corach, G., Mbekhta, M.: Split partial isometries. Complex Anal. Oper. Th. 7(4), 813–829 (2013)

    Google Scholar 

  2. Ben-Israel A.: On matrices of index zero or one. SIAM J. Appl. Math. 17, 1118–1121 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Israel, A., Greville T.N.E.: Generalized inverses. Theory and Applications, 2nd edn. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, vol. 15. Springer, New York (2003)

  4. Campbell S.L., Meyer C.D.: EP operators and generalized inverses. Canad. Math. Bull. 18(3), 327–333 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corach G., Maestripieri A., Mbekhta M.: Metric and homogeneous structure of closed range operators. J. Oper. Theory 61(1), 171–190 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Corach G., Porta H., Recht L.: The geometry of spaces of projections in C *-algebras. Adv. Math. 101(1), 59–77 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drivaliaris D., Karanasios S., Pappas D.: Factorizations of EP operators. Linear Algebra Appl. 429(7), 1555–1567 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdelyi I.: On the matrix equation Ax = λ Bx. J. Math. Anal. Appl. 17, 119–132 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Husemoller, D.: Fibre bundles, 3rd edn. Graduate Texts in Mathematics, vol. 20. Springer, New York (1994)

  10. Kato, T.: Perturbation theory for linear operators. Reprint of the 1980 edition. Classics in Mathematics. Springer, Berlin (1995)

  11. Koliha J.J.: The Drazin and Moore-Penrose inverse in C *-algebras. Math. Proc. R. Ir. Acad. 99(1), 17–27 (1999)

    MathSciNet  Google Scholar 

  12. Kuiper N.H.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19–30 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laursen K.B., Mbekhta M.: Closed range multipliers and generalized inverses. Studia Math. 107(2), 127–135 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Markus, A.S.: On some properties of linear operators connected with the notion of gap. Kishinev Gos. Uchen. Zap. 39, 265–272 (Russian) (1959)

    Google Scholar 

  15. Müller, V.: Spectral theory of linear operators and spectral systems in Banach algebras, 2nd edn. Operator Theory: Advances and Applications, vol. 139. Birkhuser Verlag, Basel (2007)

  16. Porta H., Recht L.: Minimality of geodesics in Grassmann manifolds. Proc. Am. Math. Soc. 100(3), 464–466 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Robert P.: On the group-inverse of a linear transformation. J. Math. Anal. Appl. 22, 658–669 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis, 2nd edn. Wiley, New York (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Andruchow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andruchow, E., Corach, G. & Mbekhta, M. A Geometry for the Set of Split Operators. Integr. Equ. Oper. Theory 77, 559–579 (2013). https://doi.org/10.1007/s00020-013-2086-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-013-2086-9

Mathematics Subject Classification (2010)

Keywords

Navigation