Skip to main content
Log in

Constraints on universal extra dimension models with gravity mediated decays from ATLAS diphoton search

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss the collider phenomenology of Universal Extra Dimension models with gravity mediated decays. We concentrate on diphoton associated with large missing transverse energy signature. At the collider, level-1 Kaluza-Klein (KK) particles are produced in pairs due to the conservation of KK-parity. Subsequently, KK-particles decay via cascades involving lighter KK-particles until reaching the lightest KK-particle (LKP). Finally, gravity induced decay of the LKP into photons gives rise to the diphoton signature. The search for diphoton events with large missing transverse energy was recently communicated by the ATLAS collaboration for 7 TeV center-of-mass energy and 3.1 inverse femtobarn integrated luminosity of the Large Hadron Collider. Above the Standard Model background prediction, no excess of such events was reported. We translate the absence of any excess of the diphoton events to constrain the model parameters, namely, the radius of compactification (R) and the fundamental Planck mass (M D ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    Article  ADS  Google Scholar 

  3. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    Article  ADS  Google Scholar 

  4. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].

    ADS  Google Scholar 

  7. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [INSPIRE].

    ADS  Google Scholar 

  8. B.A. Dobrescu and E. Ponton, Chiral compactification on a square, JHEP 03 (2004) 071 [hep-th/0401032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Burdman, B.A. Dobrescu and E. Ponton, Six-dimensional gauge theory on the chiral square, JHEP 02 (2006) 033 [hep-ph/0506334] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Ponton and L. Wang, Radiative effects on the chiral square, JHEP 11 (2006) 018 [hep-ph/0512304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. T.G. Rizzo, Probes of universal extra dimensions at colliders, Phys. Rev. D 64 (2001) 095010 [hep-ph/0106336] [INSPIRE].

    ADS  Google Scholar 

  12. H.-C. Cheng, Universal extra dimensions at the e e colliders, Int. J. Mod. Phys. A 18 (2003) 2779 [hep-ph/0206035] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Muck, A. Pilaftsis and R. Ruckl, Probing minimal 5 − D extensions of the standard model: From LEP to an e + e linear collider, Nucl. Phys. B 687 (2004) 55 [hep-ph/0312186] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Battaglia, A. Datta, A. De Roeck, K. Kong and K.T. Matchev, Contrasting supersymmetry and universal extra dimensions at the CLIC multi-TeV e + e collider, JHEP 07 (2005) 033 [hep-ph/0502041] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Datta, K. Kong and K.T. Matchev, Discrimination of supersymmetry and universal extra dimensions at hadron colliders, Phys. Rev. D 72 (2005) 096006 [Erratum ibid. D 72 (2005) 119901] [hep-ph/0509246] [INSPIRE].

  16. A. Datta, G.L. Kane and M. Toharia, Is it SUSY?, hep-ph/0510204 [INSPIRE].

  17. A. Barr, Measuring slepton spin at the LHC, JHEP 02 (2006) 042 [hep-ph/0511115] [INSPIRE].

    Article  ADS  Google Scholar 

  18. B. Bhattacherjee and A. Kundu, Production of Higgs boson excitations of universal extra dimension at the large hadron collider, Phys. Lett. B 653 (2007) 300 [arXiv:0704.3340] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. ElKacimi, D. Goujdami, H. Przysiezniak and P.Z. Skands, One universal extra dimension in PYTHIA, Comput. Phys. Commun. 181 (2010) 122 [arXiv:0901.4087] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. P. Bandyopadhyay, B. Bhattacherjee and A. Datta, Search for Higgs bosons of the universal extra dimensions at the Large Hadron Collider, JHEP 03 (2010) 048 [arXiv:0909.3108][INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Choudhury, A. Datta and K. Ghosh, Deciphering universal extra dimension from the top quark signals at the CERN LHC, JHEP 08 (2010) 051 [arXiv:0911.4064] [INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Kong, K. Matchev and G. Servant, Extra dimensions at the LHC, arXiv:1001.4801 [INSPIRE].

  23. B. Bhattacherjee and K. Ghosh, Search for the minimal universal extra dimension model at the LHC with \( \sqrt {s} = 7 \) TeV, Phys. Rev. D 83 (2011) 034003 [arXiv:1006.3043] [INSPIRE].

    ADS  Google Scholar 

  24. A. Datta, A. Datta and S. Poddar, Enriching the exploration of the mUED model with event shape variables at the CERN LHC, Phys. Lett. B 712 (2012) 219 [arXiv:1111.2912] [INSPIRE].

    Article  ADS  Google Scholar 

  25. K.R. Dienes, E. Dudas and T. Gherghetta, Grand unification at intermediate mass scales through extra dimensions, Nucl. Phys. B 537 (1999) 47 [hep-ph/9806292] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. K.R. Dienes, E. Dudas and T. Gherghetta, Extra space-time dimensions and unification, Phys. Lett. B 436 (1998) 55 [hep-ph/9803466] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Bhattacharyya, A. Datta, S.K. Majee and A. Raychaudhuri, Power law blitzkrieg in universal extra dimension scenarios, Nucl. Phys. B 760 (2007) 117 [hep-ph/0608208] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Servant and T.M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].

    Article  ADS  Google Scholar 

  29. K. Kong and K. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP 01 (2006) 038 [hep-ph/0509119] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Dobrescu, D. Hooper, K. Kong and R. Mahbubani, Spinless photon dark matter from two universal extra dimensions, JCAP 10 (2007) 012 [arXiv:0706.3409] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Burdman, B.A. Dobrescu and E. Ponton, Resonances from two universal extra dimensions, Phys. Rev. D 74 (2006) 075008 [hep-ph/0601186] [INSPIRE].

    ADS  Google Scholar 

  32. B.A. Dobrescu, K. Kong and R. Mahbubani, Leptons and photons at the LHC: Cascades through spinless adjoints, JHEP 07 (2007) 006 [hep-ph/0703231] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Freitas and K. Kong, Two universal extra dimensions and spinless photons at the ILC, JHEP 02 (2008) 068 [arXiv:0711.4124] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Ghosh and A. Datta, Phenomenology of spinless adjoints in two Universal Extra Dimensions, Nucl. Phys. B 800 (2008) 109 [arXiv:0801.0943] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Ghosh and A. Datta, Probing two universal extra dimensions at international linear collider, Phys. Lett. B 665 (2008) 369 [arXiv:0802.2162] [INSPIRE].

    Article  ADS  Google Scholar 

  36. K. Ghosh, Probing two universal extra dimension model with leptons and photons at the LHC and ILC, JHEP 04 (2009) 049 [arXiv:0809.1827] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D. Choudhury, A. Datta, D.K. Ghosh and K. Ghosh, Exploring two universal extra dimensions at the CERN LHC, JHEP 04 (2012) 057 [arXiv:1109.1400] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Appelquist, B.A. Dobrescu, E. Ponton and H.-U. Yee, Proton stability in six-dimensions, Phys. Rev. Lett. 87 (2001) 181802 [hep-ph/0107056] [INSPIRE].

    Article  ADS  Google Scholar 

  39. B.A. Dobrescu and E. Poppitz, Number of fermion generations derived from anomaly cancellation, Phys. Rev. Lett. 87 (2001) 031801 [hep-ph/0102010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Donini and S. Rigolin, Anisotropic type-I string compactification, winding modes and large extra dimensions, Nucl. Phys. B 550 (1999) 59 [hep-ph/9901443] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. I. Antoniadis, K. Benakli and M. Quirós, Direct collider signatures of large extra dimensions, Phys. Lett. B 460 (1999) 176 [hep-ph/9905311] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. De Rujula, A. Donini, M. Gavela and S. Rigolin, Fat brane phenomena, Phys. Lett. B 482 (2000) 195 [hep-ph/0001335] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D. Dicus, C. McMullen and S. Nandi, Collider implications of Kaluza-Klein excitations of the gluons, Phys. Rev. D 65 (2002) 076007 [hep-ph/0012259] [INSPIRE].

    ADS  Google Scholar 

  44. C. Macesanu, C. McMullen and S. Nandi, New signal for universal extra dimensions, Phys. Lett. B 546 (2002) 253 [hep-ph/0207269] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C. Macesanu, A. Mitov and S. Nandi, Gravity and matter in extra dimensions, Phys. Rev. D 68 (2003) 084008 [hep-ph/0305029] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. C. Macesanu, S. Nandi and C. Rujoiu, Monojet and single photon signals from universal extra dimensions, Phys. Rev. D 73 (2006) 076001 [hep-ph/0510350] [INSPIRE].

    ADS  Google Scholar 

  47. C. Macesanu, C. McMullen and S. Nandi, Collider implications of universal extra dimensions, Phys. Rev. D 66 (2002) 015009 [hep-ph/0201300] [INSPIRE].

    ADS  Google Scholar 

  48. ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse energy in 7 TeV proton-proton collisions with the ATLAS detector, Phys. Rev. Lett. 106 (2011) 121803 [arXiv:1012.4272] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  50. N. Sakai, Naturalness in supersymmetric guts, Z. Phys. C 11 (1981) 153 [INSPIRE].

    ADS  Google Scholar 

  51. H. Baer and X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).

    Book  Google Scholar 

  52. M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles, World Scientific, Singapore (2004).

    Google Scholar 

  53. P. Binetruy, Supersymmetry, Oxford University Press, Oxford U.K. (2006).

    MATH  Google Scholar 

  54. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].

    ADS  Google Scholar 

  55. P. Nath and M. Yamaguchi, Effects of Kaluza-Klein excitations on (g(μ) − 2), Phys. Rev. D 60 (1999) 116006 [hep-ph/9903298] [INSPIRE].

    ADS  Google Scholar 

  56. D. Chakraverty, K. Huitu and A. Kundu, Effects of universal extra dimensions on \( {B^0} - {\overline B^0} \) mixing, Phys. Lett. B 558 (2003) 173 [hep-ph/0212047] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A.J. Buras, M. Spranger and A. Weiler, The impact of universal extra dimensions on the unitarity triangle and rare K and B decays, Nucl. Phys. B 660 (2003) 225 [hep-ph/0212143] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A.J. Buras, A. Poschenrieder, M. Spranger and A. Weiler, The Impact of universal extra dimensions on BX s γ, BX s gluon, BX s μ + μ , K L π 0 e + e and ∈′/∈, Nucl. Phys. B 678 (2004) 455 [hep-ph/0306158] [INSPIRE].

    Article  ADS  Google Scholar 

  59. K. Agashe, N.G. Deshpande and G.-H. Wu, Universal extra dimensions and b → sγ, Phys. Lett. B 514 (2001) 309 [hep-ph/0105084] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J. Oliver, J. Papavassiliou and A. Santamaria, Universal extra dimensions and Z\( b\overline b \), Phys. Rev. D 67 (2003) 056002 [hep-ph/0212391] [INSPIRE].

    ADS  Google Scholar 

  61. T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass, Phys. Rev. D 67 (2003) 055002 [hep-ph/0211023] [INSPIRE].

    ADS  Google Scholar 

  62. T.G. Rizzo and J.D. Wells, Electroweak precision measurements and collider probes of the standard model with large extra dimensions, Phys. Rev. D 61 (2000) 016007 [hep-ph/9906234] [INSPIRE].

    ADS  Google Scholar 

  63. A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from electroweak tests, Phys. Lett. B 466 (1999) 107 [hep-ph/9906266] [INSPIRE].

    Article  ADS  Google Scholar 

  64. C.D. Carone, Electroweak constraints on extended models with extra dimensions, Phys. Rev. D 61 (2000) 015008 [hep-ph/9907362] [INSPIRE].

    ADS  Google Scholar 

  65. T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].

    Article  ADS  Google Scholar 

  67. C. Macesanu, A. Mitov and S. Nandi, Gravity and matter in extra dimensions, Phys. Rev. D 68 (2003) 084008 [hep-ph/0305029] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  68. C. Macesanu, The phenomenology of universal extra dimensions at hadron colliders, Int. J. Mod. Phys. A 21 (2006) 2259 [hep-ph/0510418] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. ATLAS collaboration, G. Aad et al., Measurement of the Wlν and Z/γ ll production cross sections in proton-proton collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, JHEP 12 (2010) 060 [arXiv:1010.2130] [INSPIRE].

    Article  ADS  Google Scholar 

  70. T. Sjöstrand, S. Mrenna and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175].

    Article  ADS  Google Scholar 

  71. ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, PHYS-PUB-2010-002 (2010).

  72. M. ElKacimi, D. Goujdami, H. Przysiezniak and P.Z. Skands, One universal extra dimension in PYTHIA, Comput. Phys. Commun. 181 (2010) 122 [arXiv:0901.4087] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirtiman Ghosh.

Additional information

ArXiv ePrint: 1203.1551

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, K., Huitu, K. Constraints on universal extra dimension models with gravity mediated decays from ATLAS diphoton search. J. High Energ. Phys. 2012, 42 (2012). https://doi.org/10.1007/JHEP06(2012)042

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)042

Keywords

Navigation