Skip to main content

Xiphophorus and Medaka Cancer Models

  • Chapter
  • First Online:
Cancer and Zebrafish

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Besides recently developed zebrafish cancer models, other fish species have been employed for many years as cancer models in laboratory studies. Two models, namely in Xiphophorus and medaka have proven useful in providing important clues to cancer etiology. Medaka is a complementary model to zebrafish in many areas of research since it offers similar resources and experimental tools. Xiphophorus provides the advantages of a natural (“evolutionary mutant”) model with established genetics. Xiphophorus hybrids can develop spontaneous and radiation or carcinogen induced cancers. This chapter describes the tumor models in both species, which mainly focus on melanoma, and summarizes the main findings and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amores A, Force A, Yan YL, Joly L, Amemiya C et al (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  CAS  PubMed  Google Scholar 

  2. Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (−to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    Article  CAS  PubMed  Google Scholar 

  3. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD et al (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  CAS  PubMed  Google Scholar 

  4. Braasch I, Postlethwait J (2012) Polyploidy in fish and the teleost genome duplication. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, New York, pp 341–383

    Chapter  Google Scholar 

  5. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  6. To TT, Witten PE, Renn J, Bhattacharya D, Huysseune A et al (2012) Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development 139:141–150

    Article  CAS  PubMed  Google Scholar 

  7. Wolf JC, Wolfe MJ (2005) A brief overview of nonneoplastic hepatic toxicity in fish. Toxicol Pathol 33:75–85

    Article  CAS  PubMed  Google Scholar 

  8. Harris MP, Henke K, Hawkins MB, Witten PE (2014) Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease. J Appl Ichthyol 30:616–629

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ichimura K, Kawashima Y, Nakamura T, Powell R, Hidoh Y et al (2013) Medaka fish, Oryzias latipes, as a model for human obesity-related glomerulopathy. Biochem Biophys Res Commun 431:712–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mosi L, Mutoji NK, Basile FA, Donnell R, Jackson KL et al (2012) Mycobacterium ulcerans causes minimal pathogenesis and colonization in medaka (Oryzias latipes): an experimental fish model of disease transmission. Microbes Infect 14:719–729

    Article  PubMed  PubMed Central  Google Scholar 

  11. Albertson RC, Cresko W, Detrich HW 3rd, Postlethwait JH (2009) Evolutionary mutant models for human disease. Trends Genet 25:74–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schartl M (2014) Beyond the zebrafish: diverse fish species for modeling human disease. Dis Model Mech 7:181–192

    Article  PubMed  PubMed Central  Google Scholar 

  13. Walter RB, Kazianis S, Hazlewood L, Johnston D, Kumar J (2005) The Xiphophorus genetic stock center. In: Uribe MC, Grier H (eds) Viviparous fishes. New Life Publications, Homestead, FL, pp 343–350

    Google Scholar 

  14. Schartl M, Walter RB, Shen Y, Garcia T, Catchen J et al (2013) The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 45:567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heston WE (1982) Genetics: Animal Tumors. In: Becker FF (ed) Cancer: a comprehensive treatise, 2nd edn. Plenum Press, New York, pp 47–71

    Google Scholar 

  16. Gordon M (1927) The genetics of viviparous top-minnow Platypoecilus: the inheritance of two kinds of melanophores. Genetics 12:253–283

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kosswig C (1928) Über Kreuzungen zwischen den Teleostiern Xiphophorus helleri und Platypoecilus maculatus. Z Indukt Abstammungs-Vererbungsl 47:150–158

    Google Scholar 

  18. Häussler G (1928) Über Melanombildungen bei Bastarden von Xiphophorus maculatus var. rubra. Klin Wochenschr 7:1561–1562

    Article  Google Scholar 

  19. Schartl M, Peter RU (1988) Progressive growth of fish tumors after transplantation into thymus-aplastic (nu/nu) mice. Cancer Res 48:741–744

    CAS  PubMed  Google Scholar 

  20. Riehl R, Schartl M, Kollinger G (1984) Comparative studies on the ultrastructure of malignant melanoma in fish and human by freeze-etching and transmission electron microscopy. J Cancer Res Clin Oncol 107:21–31

    Article  CAS  PubMed  Google Scholar 

  21. Gimenez-Conti I, Woodhead AD, Harshbarger JC, Kazianis S, Setlow RB et al (2001) A proposed classification scheme for Xiphophorus melanomas based on histopathologic analyses. Marine Biotechnol 3:S100–S106

    Article  CAS  Google Scholar 

  22. Anders F, Diehl H, Schwab M, Anders A (1979) Contributions to an understanding of the cellular origin of melanoma in the Gordon-Kosswig Xiphophorine fish tumor system. Pigm Cell Res 4:142–149

    Google Scholar 

  23. Weis S, Schartl M (1998) The macromelanophore locus and the melanoma oncogene Xmrk are separate genetic entities in the genome of Xiphophorus. Genetics 149:1909–1920

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schartl M, Meierjohann S (2010) Oncogenetics. In: Pilastro A, Evans J, Schlupp I (eds) Evolution and ecology of Poeciliid fishes. The University of Chicago Press, Chicago, pp 285–297

    Google Scholar 

  25. Anders A, Anders F, Klinke K (1973) Regulation of gene expression in the Gordon-Kosswig melanoma system. In: Schröder JH (ed) Genetics and mutagenesis of fish. Springer, New York, pp 33–63

    Chapter  Google Scholar 

  26. Walter RB, Kazianis S (2001) Xiphophorus interspecies hybrids as genetic models of induced neoplasia. Ilar J 42:299–321

    Article  CAS  PubMed  Google Scholar 

  27. Zander CD (1969) Über die Enstehung und Veränderung von Farbmustern in der Gattung Xiphophorus (Pisces). Mitt Hamburg Zool Mus Inst 66:241–271

    Google Scholar 

  28. Schartl A, Hornung U, Nanda I, Wacker R, Müller-Hermelink HK et al (1997) Susceptibility to the development of pigment cell tumors in a clone of the Amazon molly, Poecilia formosa, introduced through a microchromosome. Cancer Res 57:2993–3000

    CAS  PubMed  Google Scholar 

  29. Kallman KD, Atz DW (1967) Gene and chromosome homology in fishes of the genus Xiphophorus. Zoologica NY 51:107–135

    Google Scholar 

  30. Gomez A, Volff JN, Hornung U, Schartl M, Wellbrock C (2004) Identification of a second egfr gene in Xiphophorus uncovers an expansion of the epidermal growth factor receptor family in fish. Mol Biol Evol 21:266–275

    Article  CAS  PubMed  Google Scholar 

  31. Adam D, Dimitrijevic N, Schartl M (1993) Tumor suppression in Xiphophorus by an accidentally acquired promoter. Science 259:816–819

    Article  CAS  PubMed  Google Scholar 

  32. Volff JN, Körting C, Froschauer A, Zhou Q, Wilde B et al (2003) The Xmrk oncogene can escape nonfunctionalization in a highly unstable subtelomeric region of the genome of the fish Xiphophorus. Genomics 82:470–479

    Article  CAS  PubMed  Google Scholar 

  33. Regneri J, Schartl M (2012) Expression regulation triggers oncogenicity of xmrk alleles in the Xiphophorus melanoma system. Comp Biochem Physiol C Toxicol Pharmacol 155:71–80

    Article  CAS  PubMed  Google Scholar 

  34. Gomez A, Wellbrock C, Gutbrod H, Dimitrijevic N, Schartl M (2001) Ligand-independent dimerization and activation of the oncogenic Xmrk receptor by two mutations in the extracellular domain. J Biol Chem 276:3333–3340

    Article  CAS  PubMed  Google Scholar 

  35. Meierjohann S, Müller T, Schartl M, Bühner M (2006) A structural model of the extracellular domain of the oncogenic EGFR variant Xmrk. Zebrafish 3:359–369

    Article  CAS  PubMed  Google Scholar 

  36. Winnemoeller D, Wellbrock C, Schartl M (2005) Activating mutations in the extracellular domain of the melanoma inducing receptor Xmrk are tumorigenic in vivo. Int J Cancer 117:723–729

    Article  CAS  PubMed  Google Scholar 

  37. Robertson SC, Tynan J, Donoghue DJ (2000) RTK mutations and human syndromes: when good receptors turn bad. Trends Genet 16:368

    Article  CAS  PubMed  Google Scholar 

  38. Solus JF, Kraft S (2013) Ras, Raf, and MAP kinase in melanoma. Adv Anat Pathol 20:217–226

    Article  CAS  PubMed  Google Scholar 

  39. Wellbrock C, Schartl M (1999) Multiple binding sites in the growth factor receptor Xmrk mediate binding to p59fyn, GRB2 and Shc. Eur J Biochem 260:275–283

    Article  CAS  PubMed  Google Scholar 

  40. Wellbrock C, Schartl M (2000) Activation of phosphatidylinositol 3-kinase by a complex of p59fyn and the receptor tyrosine kinase Xmrk is involved in malignant transformation of pigment cells. Eur J Biochem 267:3513–3522

    Article  CAS  PubMed  Google Scholar 

  41. Meierjohann S, Wende E, Kraiss A, Wellbrock C, Schartl M (2006) The oncogenic epidermal growth factor receptor variant Xiphophorus melanoma receptor kinase induces motility in melanocytes by modulation of focal adhesions. Cancer Res 66:3145–3152

    Article  CAS  PubMed  Google Scholar 

  42. Teutschbein J, Schartl M, Meierjohann S (2009) Interaction of Xiphophorus and murine Fyn with Focal Adhesion Kinase. Comp Biochem Phys C 149:168–174

    Google Scholar 

  43. Leikam C, Hufnagel A, Schartl M, Meierjohann S (2008) Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene 27:7070–7082

    Article  CAS  PubMed  Google Scholar 

  44. Schaafhausen MK, Yang WJ, Centanin L, Wittbrodt J, Bosserhoff A et al (2013) Tumor angiogenesis is caused by single melanoma cells in a manner dependent on reactive oxygen species and NF-kappaB. J Cell Sci 126:3862–3872

    Article  CAS  PubMed  Google Scholar 

  45. Baudler M, Schartl M, Altschmied J (1999) Specific activation of a STAT family member in Xiphophorus melanoma cells. Exp Cell Res 249:212–220

    Article  CAS  PubMed  Google Scholar 

  46. Morcinek JC, Weisser C, Geissinger E, Schartl M, Wellbrock C (2002) Activation of STAT5 triggers proliferation and contributes to anti-apoptotic signalling mediated by the oncogenic Xmrk kinase. Oncogene 21:1668–1678

    Article  CAS  PubMed  Google Scholar 

  47. Wellbrock C, Weisser C, Hassel JC, Fischer P, Becker J et al (2005) STAT5 contributes to interferon resistance of melanoma cells. Curr Biol 15:1629–1639

    Article  CAS  PubMed  Google Scholar 

  48. Geissinger E, Weisser C, Fischer P, Schartl M, Wellbrock C (2002) Autocrine stimulation by osteopontin contributes to antiapoptotic signalling of melanocytes in dermal collagen. Cancer Res 62:4820–4828

    CAS  PubMed  Google Scholar 

  49. Zhou Y, Dai DL, Martinka M, Su M, Zhang Y et al (2005) Osteopontin expression correlates with melanoma invasion. J Investig Dermatol 124:1044–1052

    Article  CAS  PubMed  Google Scholar 

  50. Kluger HM, Hoyt K, Bacchiocchi A, Mayer T, Kirsch J et al (2011) Plasma markers for identifying patients with metastatic melanoma. Clin Cancer Res 17:2417–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Setlow R, Woodhead A, Grist E (1989) Animal model for ultraviolet radiation-induced melanoma: platyfish-swordtail hybrid. Proc Natl Acad Sci U S A 86:8922–8926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nairn RS, Morizot DC, Kazianis S, Woodhead AD, Setlow RB (1996) Nonmammalian models for sunlight carcinogenesis: genetic analysis of melanoma formation in Xiphophorus hybrid fish. Photochem Photobiol 64:440–448

    Article  CAS  PubMed  Google Scholar 

  53. Mitchell DL, Fernandez AA, Nairn RS, Garcia R, Paniker L et al (2010) Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proc Natl Acad Sci U S A 107:9329–9334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nairn RS, Kazianis S, Coletta LD, Trono D, Butler AP et al (2001) Genetic analysis of susceptibility to spontaneous and UV-Induced carcinogenesis in Xiphophorus hybrid fish. Marine Biotechnol 3:S24–S36

    Article  CAS  Google Scholar 

  55. Setlow RB, Grist E, Thompson K, Woodhead AD (1993) Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci U S A 90:6666–6670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang K, Boswell M, Walter DJ, Downs KP, Gaston-Pravia K et al (2014) UVB-induced gene expression in the skin of Xiphophorus maculatus Jp 163 B. Comp Biochem Physiol C Toxicol Pharmacol 163:86–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Setlow RB, Regan JD, German J, Carrier WL (1969) Evidence that xeroderm pigmentosum cells do not perform the first step in the repair of UV damage to their DNA. Proc Natl Acad Sci U S A 64:1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:652–656

    Article  CAS  PubMed  Google Scholar 

  59. Cleaver JE, Afzal V, Feeney L, McDowell M, Sadinski W et al (1999) Increased ultraviolet sensitivity and chromosomal instability related to P53 function in the xeroderma pigmentosum variant. Cancer Res 59:1102–1108

    CAS  PubMed  Google Scholar 

  60. Rahn JJ, Trono D, Gimenez-Conti I, Butler AP, Nairn RS (2008) Etiology of MNU-induced melanomas in Xiphophorus hybrids. Comp Biochem Physiol C Toxicol Pharmacol 149(2):129–133

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wood SR, Berwick M, Ley RD, Walter RB, Setlow RB et al (2006) UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proc Natl Acad Sci U S A 103:4111–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mitani H, Shima A (1995) Induction of cyclobutane pyrimidine dimer photolyase in cultured fish cells by fluorescent light and oxygen stress. Photochem Photobiol 61:373–377

    Article  CAS  PubMed  Google Scholar 

  63. Ahmed FE, Setlow RB (1993) Ultraviolet radiation-induced DNA damage and its photorepair in the skin of the platyfish Xiphophorus. Cancer Res 53:2249–2255

    CAS  PubMed  Google Scholar 

  64. Mitchell D, Paniker L, Sanchez G, Trono D, Nairn R (2007) The etiology of sunlight-induced melanoma in Xiphophorus hybrid fish. Mol Carcinog 46:679–684

    Article  CAS  PubMed  Google Scholar 

  65. Förnzler D, Wittbrodt J, Schartl M (1991) Analysis of an esterase linked to a locus involved in the regulation of the melanoma oncogene and isolation of polymorphic marker sequences in Xiphophorus. Biochem Genet 29:509–524

    Article  PubMed  Google Scholar 

  66. Morizot DC, Siciliano MJ (1983) Linkage group V of platyfishes and Swordtails of the genus Xiphophorus (Poeciliidae): linkage of loci for malate dehydrogenase-2 and esterase-1 and esterase-4 with a gene controlling the severity of hybrid melanomas. J Natl Cancer Inst 71:809–813

    CAS  PubMed  Google Scholar 

  67. Ahuja MR, Schwab M, Anders F (1980) Linkage between a regulatory locus for melanoma cell differentiation and an esterase locus in Xiphophorus. J Hered 71:403–407

    CAS  PubMed  Google Scholar 

  68. Siciliano MJ, Wright DA (1976) Biochemical genetics of the platyfish-swordtail hybrid melanoma system. Prog Exp Tumor Res 20:398–411

    Article  CAS  PubMed  Google Scholar 

  69. Kazianis S, Gutbrod H, Nairn RS, McEntire BB, Della Coletta L et al (1998) Localization of a CDKN2 gene in linkage group V of Xiphophorus fishes defines it as a candidate for the DIFF tumor suppressor. Genes Chromosomes Cancer 22:210–220

    Article  CAS  PubMed  Google Scholar 

  70. Kazianis S, Morizot DC, McEntire BB, Nairn RS, Borowsky RL (1996) Genetic mapping in Xiphophorus hybrid fish: assignment of 43 AP- PCR/RAPD and isozyme markers to multipoint linkage groups. Genome Res 6:280–289

    Article  CAS  PubMed  Google Scholar 

  71. Morizot DC, Nairn RS, Walter RB, Kazianis S (1998) The Linkage map of Xiphophorus fishes. ILAR J 39:237–248

    Article  PubMed  Google Scholar 

  72. Kazianis S, Morizot DC, Coletta LD, Johnston DA, Woolcock B et al (1999) Comparative structure and characterization of a CDKN2 gene in a Xiphophorus fish melanoma model. Oncogene 18:5088–5099

    Article  CAS  PubMed  Google Scholar 

  73. Chin L, Garraway LA, Fisher DE (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20:2149–2182

    Article  CAS  PubMed  Google Scholar 

  74. Butler AP, Trono D, Coletta LD, Beard R, Fraijo R et al (2007) Regulation of CDKN2A/B and Retinoblastoma genes in Xiphophorus melanoma. Comp Biochem Physiol C Toxicol Pharmacol 145:145–155

    Article  PubMed  Google Scholar 

  75. Meyle KD, Guldberg P (2009) Genetic risk factors for melanoma. Hum Genet 126:499–510

    Article  CAS  PubMed  Google Scholar 

  76. Nairn RS, Kazianis S, McEntire BB, Della Coletta L, Walter RB et al (1996) A CDKN2-like polymorphism in Xiphophorus LG V is associated with UV-B-induced melanoma formation in platyfish-swordtail hybrids. Proc Natl Acad Sci U S A 93:13042–13047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Butler AP, Trono D, Beard R, Fraijo R, Nairn RS (2007) Melanoma susceptibility and cell cycle genes in Xiphophorus hybrids. Mol Carcinog 46:685–691

    Article  CAS  PubMed  Google Scholar 

  78. Kazianis S, Coletta LD, Morizot DC, Johnston DA, Osterndorff EA et al (2000) Overexpression of a fish CDKN2 gene in a hereditary melanoma model. Carcinogenesis 21:599–605

    Article  CAS  PubMed  Google Scholar 

  79. Kazianis S, Khanolkar VA, Nairn RS, Rains JD, Trono D et al (2004) Structural organization, mapping, characterization and evolutionary relationships of CDKN2 gene family members in Xiphophorus fishes. Comp Biochem Physiol C Toxicol Pharmacol 138:291–299

    Article  PubMed  Google Scholar 

  80. Kazianis S, Gimenez-Conti I, Setlow RB, Woodhead AD, Harshbarger JC et al (2001) MNU induction of neoplasia in a platyfish model. Lab Invest 81:1191–1198

    Article  CAS  PubMed  Google Scholar 

  81. Schwab M, Kollinger G, Haas J, Ahuja MR, Abdo S et al (1979) Genetic basis of susceptibility for neuroblastoma following treatment with N-methyl-N-nitrosourea and X-rays in Xiphophorus. Cancer Res 39:519–526

    CAS  PubMed  Google Scholar 

  82. Anders F, Schartl M, Barnekow A (1984) Xiphophorus as an in vivo model for studies on oncogenes. Natl Cancer Inst Monogr 65:97–109

    CAS  PubMed  Google Scholar 

  83. Gordon M (1947) Genetics of ocular-tumor development in fishes (preliminary report). J Natl Cancer Inst 7:87–92

    Google Scholar 

  84. Gorbman A, Gordon M (1951) Spontaneous thyroidal tumors in the Swordtail Xiphophorus montezumae. Cancer Res 11:184–187

    CAS  PubMed  Google Scholar 

  85. Berg O, Gorbman A (1954) Iodine utilization by tumorous thyroid tissue of the swordtail Xiphophorus montezumae. Cancer Res 14:232–236

    CAS  PubMed  Google Scholar 

  86. Wittbrodt J, Shima A, Schartl M (2002) Medaka-a model organism from the far East. Nat Rev Genet 3:53–64

    Article  CAS  PubMed  Google Scholar 

  87. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719

    Article  CAS  PubMed  Google Scholar 

  88. Ansai S, Inohaya K, Yoshiura Y, Schartl M, Uemura N et al (2014) Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka. Dev Growth Differ 56:98–107

    Article  CAS  PubMed  Google Scholar 

  89. Spivakov M, Auer TO, Peravali R, Dunham I, Dolle D et al (2014) Genomic and phenotypic characterization of a wild medaka population: towards the establishment of an isogenic population genetic resource in fish. G3 (Bethesda) 4:433–445

    Article  Google Scholar 

  90. Hyodo-Taguchi Y, Egami N (1985) Establishment of inbred strains of the medaka Oryzias latipes and the usefulness of the strains for biomedical research. Zool Sci 2:305–316

    Google Scholar 

  91. Hyodo-Taguchi Y, Matsudaira H (1984) Induction of transplantable melanoma by treatment with N-methyl-N'-nitro-N-nitrosoguanidine in an inbred strain of the teleost Oryzias latipes. J Natl Cancer Inst 73:1219–1227

    CAS  PubMed  Google Scholar 

  92. Hyodo-Taguchi Y, Matsudaira H (1987) Higher susceptibility to N-methyl-N'-nitro-N-nitrosoguanidine-induced tumorigenesis in an interstrain hybrid of the fish, Oryzias latipes (medaka). Jpn J Cancer Res 78:487–493

    CAS  PubMed  Google Scholar 

  93. Schartl M, Wilde B, Laisney JA, Taniguchi Y, Takeda S et al (2010) A mutated EGFR is sufficient to induce malignant melanoma with genetic background-dependent histopathologies. J Invest Dermatol 130:249–258

    Article  CAS  PubMed  Google Scholar 

  94. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF et al (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15:249–254

    Article  CAS  PubMed  Google Scholar 

  95. Schartl M, Kneitz S, Wilde B, Wagner T, Henkel CV et al (2012) Conserved expression signatures between medaka and human pigment cell tumors. PLoS One 7, e37880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mishra RR, Kneitz S, Schartl M (2014) Comparative analysis of melanoma deregulated miRNAs in the medaka and Xiphophorus pigment cell cancer models. Comp Biochem Physiol C Toxicol Pharmacol 163:64–76

    Article  CAS  PubMed  Google Scholar 

  97. Liedtke D, Erhard I, Abe K, Furutani-Seiki M, Kondoh H et al (2014) Xmrk-induced melanoma progression is affected by Sdf1 signals through Cxcr7. Pigment Cell Melanoma Res 27:221–233

    Article  CAS  PubMed  Google Scholar 

  98. Matsuzaki Y, Hosokai H, Mizuguchi Y, Fukamachi S, Shimizu A et al (2013) Establishment of HRAS(G12V) transgenic medaka as a stable tumor model for in vivo screening of anticancer drugs. Plos One 8:e54424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Santoriello C, Gennaro E, Anelli V, Distel M, Kelly A et al (2010) Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 5, e15170

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH), Division of Comparative Medicine (for RW: R24-OD-011120, R24-OD-011199, and R24-OD-018555, for MS: 1R01GM085318-01A2, subaward No. 212791A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Schartl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schartl, M., Walter, R.B. (2016). Xiphophorus and Medaka Cancer Models. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_23

Download citation

Publish with us

Policies and ethics