Skip to main content

Airborne and Spaceborne Remote Sensing and Digital Image Analysis in Archaeology

  • Chapter
  • First Online:
Digital Geoarchaeology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

Abstract

Remote sensing has a long and successful track record of detecting and mapping archaeological traces of human activity in the landscape. Since the early twentieth century, the tools and procedures of aerial archaeology evolved gradually, while earth observation remote sensing experienced major steps of technological and methodological advancements and innovation that today enable the monitoring of the earth’s surface at unprecedented accuracy, resolution and complexity. Much of the remote sensing data acquired in this process potentially holds important information about the location and context of archaeological sites and objects. Archaeology has started to make use of this tremendous potential by developing new approaches for the detection and mapping of archaeological traces based on digital remote sensing data and the associated tools and procedures. This chapter reviews the history, tools, methods, procedures and products of archaeological remote sensing and digital image analysis, emphasising recent trends towards convergence of aerial archaeology and earth observation remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abrams MJ, Comer DC (2013) Multispectral and hyperspectral technology and archaeological applications. In: Comer DC, Harrower MJ (eds) Mapping archaeological landscapes from space. Springer, New York, pp 57–71. https://doi.org/10.1007/978-1-4614-6074-9_6

    Chapter  Google Scholar 

  • Agapiou A, Alexakis DD, Hadjimitsis DG (2014) Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks. Int J Digital Earth 7:351–372. https://doi.org/10.1080/17538947.2012.674159

    Article  Google Scholar 

  • Agapiou A, Alexakis DD, Simon FX, Kalayci T, Papadopoulos N, Sarris A, Hadjimitsis D (2015) Extraction of archaeological information using high resolution FormoSAT-2 data. Int J Herit Digital Era 4:241–255. https://doi.org/10.1260/2047-4970.4.3-4.241

    Article  Google Scholar 

  • Agapiou A, Alexakis DD, Sarris A, Hadjimitsis DG (2016) Colour to greyscale pixels: re-seeing greyscale archived aerial photographs and declassified satellite CORONA images based on image fusion techniques. Archaeol Prospect 23:231–241. https://doi.org/10.1002/arp.1536

    Article  Google Scholar 

  • Beck A (2011) Archaeological applications of multi/hyper-spectral data – challenges and potential. In: Cowley DC (ed) Remote sensing for archaeological heritage management. Occasional Publication of the Aerial Archaeology Research Group No. 3. Europae Archaeologia Consilium, Brussels, pp 87–97

    Google Scholar 

  • Bennett R, Cowley D, De Laet V (2014) The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88:896–905. https://doi.org/10.1017/S0003598X00050766

    Article  Google Scholar 

  • Bevan A (2015) The data deluge. Antiquity 89:1473–1484. https://doi.org/10.15184/aqy.2015.102.

    Article  Google Scholar 

  • Brophy K, Cowley D (eds) (2005) From the air: understanding aerial archaeology. Tempus, Stroud

    Google Scholar 

  • Campana S (2017a) Remote sensing in archaeology. In: Gilbert AS (ed) Encyclopedia of geoarchaeology. Springer, Dordrecht, pp 703–725. https://doi.org/10.1007/978-1-4020-4409-0_122

    Google Scholar 

  • Campana S (2017b) Drones in archaeology. State-of-the-art and future perspectives. Archaeol Prospect. doi:https://doi.org/10.1002/arp.1569

  • Casana J (2014) Regional-scale archaeological remote sensing in the age of Big Data. Adv Archaeol Pract 2:222–233. https://doi.org/10.7183/2326-3768.2.3.222

    Article  Google Scholar 

  • Casana J, Cothren J (2008) Stereo analysis, DEM extraction and orthorectification of CORONA satellite imagery: archaeological applications from the Near East. Antiquity 82:732–749. https://doi.org/10.1017/S0003598X00097349

    Article  Google Scholar 

  • Caspari G, Balz T, Gang L, Wang X, Liao M (2014) Application of Hough Forests for the detection of grave mounds in high-resolution satellite imagery. In: Proceedings of the 2014 IEEE geoscience and remote sensing symposium, pp 906–909. https://doi.org/10.1109/IGARSS.2014.6946572

  • Cerrillo-Cuenca E (2017) An approach to the automatic surveying of prehistoric barrows through LiDAR. Quat Int 435B:135–145. https://doi.org/10.1016/j.quaint.2015.12.099

  • Corsi C, SlapÅ¡ak B, Vermeulen F (eds) (2013) Good practice in archaeological diagnostics: non-invasive survey of complex archaeological sites. Springer, Cham. https://doi.org/10.1007/978-3-319-01784-6

    Google Scholar 

  • Cowley DC (2012) In with the new, out with the old? Auto-extraction for remote sensing archaeology. In: Bostater CR Jr, Mertikas SP, Neyt X, Nichol C, Cowley DC, Bruyant JP (eds) Remote sensing of the ocean, sea ice, coastal waters, and large water regions 853206. Proceedings of SPIE 8532. SPIE, Dresden. https://doi.org/10.1117/12.981758

    Google Scholar 

  • Cowley DC (2016) What do the patterns mean? Archaeological distributions and bias in survey data. In: Forte M, Campana S (eds) Digital methods and remote sensing in archaeology. Springer, Cham, pp 147–170. https://doi.org/10.1007/978-3-319-40658-9_7

    Chapter  Google Scholar 

  • Cowley DC, Stichelbaut BB (2012) Historical aerial photographic archives for European archaeology. Eur J Archaeol 15:217–236. https://doi.org/10.1179/1461957112Y.0000000010

    Article  Google Scholar 

  • Cowley DC, Standring RA, Abicht MJ (eds) (2010) Landscapes through the lens: aerial photographs and historic environment. Occasional Publication of the Aerial Archaeology Research Group No. 2. Oxbow Books, Oxford

    Google Scholar 

  • Crutchley S, Crow P (2009) The light fantastic: using airborne laser scanning in archaeological survey. English Heritage, Swindon

    Google Scholar 

  • Day DA, Logsdon JM, Latell B (eds) (1998) Eye in the sky: the story of the CORONA spy satellites. Smithsonian Institution, Washington

    Google Scholar 

  • De Laet V, Paulissen E, Waelkens M (2007) Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). J Archaeol Sci 34:830–841. https://doi.org/10.1016/j.jas.2006.09.013

    Article  Google Scholar 

  • De Laet V, Paulissen E, Meuleman K, Waelkens M (2009) Effects of image characteristics on the identification and extraction of archaeological features from Ikonos-2 and Quickbird-2 imagery: case study Sagalassos (southwest Turkey). Int J Remote Sens 30:5655–5668. https://doi.org/10.1080/01431160802705821

    Article  Google Scholar 

  • Dietre B, Walser C, Lambers K, Reitmaier T, Hajdas I, Haas JN (2014) Palaeoecological evidence for Mesolithic to Medieval climatic change and anthropogenic impact on the Alpine flora and vegetation of the Silvretta Massif (Switzerland/Austria). Quat Int 353:3–16. https://doi.org/10.1016/j.quaint.2014.05.001

    Article  Google Scholar 

  • Dietre B, Walser C, Kofler W, Kothieringer K, Hajdas I, Lambers K, Reitmaier T, Haas JN (2017) Neolithic to Bronze Age (4850–3450 cal. BP) fire management of the Alpine Lower Engadine landscape (Switzerland) to establish pastures and cereal fields. Holocene 27:181–196. https://doi.org/10.1177/0959683616658523

    Article  Google Scholar 

  • Doneus M (2013) Die hinterlassene Landschaft – Prospektion und Interpretation in der Landschaftsarchäologie. Mitteilungen der Prähistorischen Kommission 78. Austrian Academy of Sciences, Vienna

    Google Scholar 

  • Doneus M, Verhoeven G, Atzberger C, Wess M, Rus M (2014) New ways to extract archaeological information from hyperspectral pixels. J Archaeol Sci 52:84–96. https://doi.org/10.1016/j.jas.2014.08.023

    Article  Google Scholar 

  • Doneus M, Wieser M, Verhoeven G, Karel W, Fera M, Pfeifer N (2016) Automated archiving of archaeological aerial mages. Remote Sens 8:209. https://doi.org/10.3390/rs8030209

    Article  Google Scholar 

  • Donoghue D, Beck A, Galiatsatos N, McManus K, Philips G (2006) The use of remote sensing data for visualising and interpreting archaeological landscapes. In: Baltsavias E, Gruen A, van Gool L, Pateraki M (eds) Recording, modeling and visualization of cultural heritage. Taylor & Francis, London, pp 317–326

    Google Scholar 

  • Fowler MJF (2013) Declassified intelligence satellite photographs. In: Hanson WS, Oltean IA (eds) Archaeology from historical aerial and satellite archives. Springer, New York, pp 47–66. https://doi.org/10.1007/978-1-4614-4505-0_4

    Chapter  Google Scholar 

  • Gattiglia G (2015) Think big about data: archaeology and the Big Data challenge. Archäologische Informationen 38:113–124. https://doi.org/10.11588/ai.2015.1.26155

  • Giardino MJ (2011) A history of NASA remote sensing contributions to archaeology. J Archaeol Sci 38:2003–2009. https://doi.org/10.1016/j.jas.2010.09.017

    Article  Google Scholar 

  • Goossens R, De Wulf A, Bourgeois J, Gheyle W, Willems T (2006) Satellite imagery and archaeology: the example of CORONA in the Altai mountains. J Archaeol Sci 33:745–755. https://doi.org/10.1016/j.jas.2005.10.010

    Article  Google Scholar 

  • Grosman L (2016) Reaching the point of no return: the computational revolution in archaeology. Annu Rev Anthropol 45:129–145. https://doi.org/10.1146/annurev-anthro-102215-095946

    Article  Google Scholar 

  • GutiĂ©rrez G, Searcy MT (eds) (2016) Special issue: Drones in archaeology. SAA Archaeol Rec 16

    Google Scholar 

  • Hanson WS (2010) The future of aerial archaeology in Europe. Photo InterprĂ©tation. Eur J Appl Remote Sens 46:3–11

    Google Scholar 

  • Hanson WS, Oltean IA (eds) (2013) Archaeology from historical aerial and satellite archives. Springer, New York. https://doi.org/10.1007/978-1-4614-4505-0

    Google Scholar 

  • Horne PD (2009) A strategy for the national mapping programme. English Heritage, Swindon

    Google Scholar 

  • Johnson JK (ed) (2006) Remote sensing in archaeology: an explicitly North American perspective. University of Alabama Press, Tuscaloosa

    Google Scholar 

  • Kothieringer K, Walser C, Dietre B, Reitmaier T, Haas JN, Lambers K (2015) High impact: early pastoralism and environmental change during the Neolithic and Bronze Age in the Silvretta Alps (Switzerland/Austria) as evidenced by archaeological, palaeoecological and pedological proxies. Z Geomorphol 59(2):177–198. https://doi.org/10.1127/zfg_suppl/2015/S-59210

    Article  Google Scholar 

  • Lambers K, Eisenbeiss H, Sauerbier M, Kupferschmidt D, Gaisecker T, Sotoodeh S, Hanusch T (2007) Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. J Archaeol Sci 34:1702–1712. https://doi.org/10.1016/j.jas.2006.12.008

    Article  Google Scholar 

  • Lasaponara R, Masini N (eds) (2012) Satellite remote sensing: a new tool for archaeology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8801-7

    Google Scholar 

  • Leckebusch J (2005) Aerial archaeology: a full digital workflow for aerial photography. Archaeol Prospect 12:235–244. https://doi.org/10.1002/arp.260

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  • Lemmens M (2011) Digital aerial cameras. GIM Int 25(4):18–25

    Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2015) Remote sensing and image interpretation, 7th edn. Wiley, New York

    Google Scholar 

  • Lin AYM, Huynh A, Lanckriet G, Barrington L (2014) Crowdsourcing the unknown: the satellite search for Genghis Khan. PLoS One 9(12):e114046. https://doi.org/10.1371/journal.pone.0114046

    Article  Google Scholar 

  • Menze BH, Ur JA (2012) Mapping patterns of long-term settlement in Northern Mesopotamia at a large scale. PNAS 109(14):E778–E787. https://doi.org/10.1073/pnas.1115472109

    Article  Google Scholar 

  • Mikhail EM, Bethel JS, McClone JC (2001) Introduction to modern photogrammetry. Wiley, New York

    Google Scholar 

  • Musson C, Palmer R, Campana S (2013) Flights into the past: aerial photography, photo interpretation and mapping for archaeology. Occasional Publication No. 4 of the Aerial Archaeology Research Group. http://archiv.ub.uni-heidelberg.de/propylaeumdok/volltexte/2013/2009. Accessed 3 Feb 2017.

  • Palmer R (2005) If they used their own photographs they wouldn’t take them like that. In: Brophy K, Cowley DC (eds) From the air: understanding aerial archaeology. Tempus, Stroud, pp 94–116

    Google Scholar 

  • Parcak SH (2009) Satellite remote sensing for archaeology. Routledge, London

    Google Scholar 

  • Remondino F (2011) Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens 3:1104–1138. https://doi.org/10.3390/rs3061104

    Article  Google Scholar 

  • Remondino F, Gehrke M (2015) Oblique aerial imagery – a review. In: Fritsch D (ed) Photogrammetric week ’15. Wichmann, Berlin, pp 75–84

    Google Scholar 

  • Richards JA, Jia X (2006) Remote sensing digital image analysis: an introduction, 4th edn. Springer, Berlin

    Google Scholar 

  • Schneider A, Takla M, Nicolay A, Raab A, Raab T (2015) A template-matching approach combining morphometric variables for automated mapping of charcoal kiln sites. Archaeol Prospect 22:45–62. https://doi.org/10.1002/arp.1497

    Article  Google Scholar 

  • Schuetter J, Goel P, McCorriston J, Park J, Senn M, Harrower M (2013) Autodetection of ancient Arabian tombs in high-resolution satellite imagery. Int J Remote Sens 34:6611–6635. https://doi.org/10.1080/01431161.2013.802054

    Article  Google Scholar 

  • Sevara C, Pregesbauer M, Doneus M, Verhoeven G, Trinks I (2016) Pixel versus object – a comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data. J Archaeol Sci Rep 5:485–498. https://doi.org/10.1016/j.jasrep.2015.12.023

    Google Scholar 

  • Sever TL (1990) Remote sensing applications in archeological research: tracing prehistoric human impact upon the environment. PhD dissertation, University of Colorado. University Microfilms, Ann Arbor

    Google Scholar 

  • Stewart C, Rast M, Sarti F, Arino O (2015) ESA activities in earth observation for cultural heritage applications. Int J Herit Digital Era 4:325–338. https://doi.org/10.1260/2047-4970.4.3-4.325

    Article  Google Scholar 

  • Traviglia A (2007) MIVIS hyperspectral sensors for the detection and GIS supported interpretation of subsoil archaeological sites. In: Clark JT, Hagemeister EM (eds) Digital discovery: exploring new frontiers in human heritage. CAA 2006 Fargo. Archaeolingua, Budapest, pp 287–299

    Google Scholar 

  • Traviglia A, Cowley DC, Lambers K (2016) Finding common ground: human and computer vision in archaeological prospection. AARGnews 53:11–24. http://hdl.handle.net/1887/43751. Accessed 3 Feb 2017

    Google Scholar 

  • Trier Ă˜D, Pilø LH (2012) Automatic detection of pit structures in airborne laser scanning data. Archaeol Prospect 19:103–121. https://doi.org/10.1002/arp.1421

    Article  Google Scholar 

  • Trier Ă˜D, Larsen SĂ˜, Solberg R (2009) Automatic detection of circular structures in high-resolution satellite images of agricultural land. Archaeol Prospect 16:1–15. https://doi.org/10.1002/arp.339

    Article  Google Scholar 

  • Trier Ă˜D, Zortea M, Tonning C (2015) Automatic detection of mound structures in airborne laser scanning data. J Archaeol Sci Rep 2:69–79. https://doi.org/10.1016/j.jasrep.2015.01.005

    Google Scholar 

  • Trier Ă˜D, Salberg AB, Pilø LH (2017) Semi-automatic mapping of charcoal kilns from airborne laser scanning data using deep learning. In: Uleberg E, Matsumoto M (eds) Proceedings of the 44th annual conference on computer applications and quantitative methods in archaeology (CAA 2016)

    Google Scholar 

  • TrĂ¼mpler C (2005) Aerial photography in archaeology and its pioneers. In: TrĂ¼mpler C (ed) The past from above: photographs by Georg Gerster. Frances Lincoln, London, pp 9–23

    Google Scholar 

  • Verhoeven G (2008) Imaging the invisible using modified digital still cameras for straightforward and low-cost archaeological near-infrared photography. J Archaeol Sci 35:3087–3100. https://doi.org/10.1016/j.jas.2008.06.012

    Article  Google Scholar 

  • Verhoeven G (2009) Providing an archaeological bird’s eye view – an overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in archaeology. Archaeol Prospect 16:233–249. https://doi.org/10.1002/arp.354

    Article  Google Scholar 

  • Verhoeven G (2012) Near-infrared crop mark archaeology: from its historical use to current digital implementations. J Archaeol Method Theory 19:132–160. https://doi.org/10.1007/s10816-011-9104-5

    Article  Google Scholar 

  • Verhoeven G, Sevara C (2016) Trying to break new ground in aerial archaeology. Remote Sens 8:918. https://doi.org/10.3390/rs8110918

    Article  Google Scholar 

  • Verhoeven G, Sevara C, Karel W, Ressl C, Doneus M, Briese C (2013) Undistorting the past: new techniques for orthorectification of archaeological aerial frame imagery. In: Corsi C, SlapÅ¡ak B, Vermeulen F (eds) Good practice in archaeological diagnostics: non-invasive survey of complex archaeological sites. Springer, Cham, pp 31–67. https://doi.org/10.1007/978-3-319-01784-6_3

    Chapter  Google Scholar 

  • Vletter WF (2014) (Semi-)automatic extraction from Airborne Laser Scan data of roads and paths in forested areas. In: Hadjimitsis DG, Themistocleous K, Michaelides S, Papadavid G (eds) Second international conference on remote sensing and geoinformation of the environment (RSCy2014), Proceedings of SPIE 9229. SPIE, Paphos 92291D.  https://doi.org/10.1117/12.2069709

  • Wiseman J, El-Baz F (eds) (2007) Remote sensing in archaeology. Springer, New York. https://doi.org/10.1007/0-387-44455-6

    Google Scholar 

  • Zingman I (2016) Semi-automated detection of fragmented rectangular structures in high resolution remote sensing images with application in archaeology. PhD dissertation, University of Konstanz. http://nbn-resolving.de/urn:nbn:de:bsz:352-0-386546. Accessed 3 Feb 2017

  • Zingman I, Saupe D, Lambers K (2014) A morphological approach for distinguishing texture and individual features in images. Pattern Recogn Lett 47:129–138. https://doi.org/10.1016/j.patrec.2014.03.019

    Article  Google Scholar 

  • Zingman I, Saupe D, Penatti OAB, Lambers K (2016) Detection of fragmented rectangular enclosures in very high resolution remote sensing images. IEEE Trans Geosci Remote Sens 54:4580–4593. https://doi.org/10.1109/TGRS.2016.2545919

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Lambers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lambers, K. (2018). Airborne and Spaceborne Remote Sensing and Digital Image Analysis in Archaeology. In: Siart, C., Forbriger, M., Bubenzer, O. (eds) Digital Geoarchaeology. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-25316-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25316-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25314-5

  • Online ISBN: 978-3-319-25316-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics