Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 30, 2008

Comparison of different technologies for alginate beads production

  • Ulf Prüsse EMAIL logo , Luca Bilancetti , Marek Bučko , Branko Bugarski , Jozef Bukowski , Peter Gemeiner , Dorota Lewińska , Verica Manojlovic , Benjamin Massart , Claudio Nastruzzi , Viktor Nedovic , Denis Poncelet , Swen Siebenhaar , Lucien Tobler , Azzurra Tosi , Alica Vikartovská and Klaus-Dieter Vorlop
From the journal Chemical Papers

Abstract

This paper describes the results of the round robin experiment “Bead production technologies” carried out during the COST 840 action “Bioencapsulation Innovation and Technologies” within the 5th Framework Program of the European Community. In this round robin experiment, calcium alginate hydrogel beads with the diameter of (800 ± 100) μm were produced by the most common bead production technologies using 0.5–4 mass % sodium alginate solutions as starting material. Dynamic viscosity of the alginate solutions ranged from less than 50 mPa s up to more than 10000 mPa s. With the coaxial air-flow and electrostatic enhanced dropping technologies as well as with the JetCutter technology in the soft-landing mode, beads were produced from all alginate solutions, whereas the vibration technology was not capable to process the high-viscosity 3 % and 4 % alginate solutions. Spherical beads were generated by the electrostatic and the JetCutter technologies. Slightly deformed beads were obtained from high-viscosity alginate solutions using the coaxial airflow and from the 0.5 % and 2 % alginate solutions using the vibration technology. The rate of bead production using the JetCutter was about 10 times higher than with the vibration technology and more than 10000 times higher than with the coaxial air-flow and electrostatic technology.

[1] Anilkumar, A. V., Lacík, I., & Wang, T. G. (2001). A novel reactor for making uniform capsules. Biotechnology and Bioengineering, 75, 581–589. DOI: 10.1002/bit.10077. http://dx.doi.org/10.1002/bit.1007710.1002/bit.10077Search in Google Scholar

[2] Brandenberger, H., & Widmer, F. (1998). A new multinozzle encapsulation/immobilisation system to produce uniform beads of alginate. Journal of Biotechnology, 63, 73–80. DOI: 10.1016/S0168-1656(98)00077-7. http://dx.doi.org/10.1016/S0168-1656(98)00077-710.1016/S0168-1656(98)00077-7Search in Google Scholar

[3] Bučko, M., Vikartovská, A., Lacík, I., Kolláriková, G., Gemeiner, P., Pätoprstý, V., & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzyme and Microbial Technology, 36, 118–126. DOI: 10.1016/j.enzmictec.2004.07.006. http://dx.doi.org/10.1016/j.enzmictec.2004.07.00610.1016/j.enzmictec.2004.07.006Search in Google Scholar

[4] Bugarski, B., Li, Q. L., Goosen, M. F. A., Poncelet, D., Neufeld, R. J., & Vunjak, G. (1994). Electrostatic droplet generation: Mechanism of polymer droplet formation. AIChE Journal, 40, 1026–1031. DOI: 10.1002/aic.690400613. http://dx.doi.org/10.1002/aic.69040061310.1002/aic.690400613Search in Google Scholar

[5] Bugarski, B., Obradovic, B., Nedovic, V., & Poncelet, D. (2004). Immobilization of cells and enzymes using electrostatic droplet generation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 277–294). Dordrecht: Kluwer Academic Publishers. Search in Google Scholar

[6] Heinzen, C., Berger, A., & Marison, I. (2004). Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 257–275). Dordrecht: Kluwer Academic Publishers. Search in Google Scholar

[7] Heinzen, C., Marison, I., Berger, A., & von Stockar, U. (2002). Use of vibration technology for jet break-up for encapsulation of cells, microbes and liquids in monodisperse microcapsules. Landbauforschung Völkenrode, SH241, 19–25. Search in Google Scholar

[8] Lacík, I., Briššová, M., Anilkumar, A. V., Powers, A. C., and Wang, T. (1998). New capsule with tailored properties for the encapsulation of living cells. Journal of Biomedical Materials Research, 39, 52–60. DOI: 10.1002/(SICI)1097-4636(199801)39:1〈52::AID-JBM7〉3.0.CO;2-H. http://dx.doi.org/10.1002/(SICI)1097-4636(199801)39:1<52::AID-JBM7>3.0.CO;2-H10.1002/(SICI)1097-4636(199801)39:1<52::AID-JBM7>3.0.CO;2-HSearch in Google Scholar

[9] Lewińska, D., Rosiński, S., & Weryński, A. (2004). Influence of process conditions during impulsed electrostatic droplet formation on size distribution of hydrogel beads. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 32, 41–53. DOI: 10.1081/BIO-120028667. http://dx.doi.org/10.1081/BIO-12002866710.1081/BIO-120028667Search in Google Scholar

[10] Manojlovic, V., Djonlagic, J., Obradovic, B., Nedovic, V., & Bugarski, B. (2006). Investigations of cell immobilization in alginate: rheological and electrostatic extrusion studies. Journal of Chemical Technology and Biotechnology, 81, 505–510. DOI: 10.1002/jctb.1465. http://dx.doi.org/10.1002/jctb.146510.1002/jctb.1465Search in Google Scholar

[11] Melvik, J. E., & Dornish, M. (2004). Alginate as a carrier for cell immobilisation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 33–51). Dordrecht: Kluwer Academic Publishers. Search in Google Scholar

[12] Nedovic, V., Obradovic, B., Poncelet, D., Goosen, M. F. A., Leskosek-Cukalovic, I., & Bugarski, B. (2002). Cell immobilisation by electrostatic droplet generation. Landbauforschung Völkenrode, SH241, 11–17. Search in Google Scholar

[13] Neufeld, R. J., & Poncelet, D. (2004). Industrial scale encapsulation of cells using emulsification/dispersion technologies. In V Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 311–325). Dordrecht: Kluwer Academic Publishers. Search in Google Scholar

[14] Ogbonna, J. C. (2004). Atomisation techniques for immobilisation of cells in micro gel beads. In V Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 327–341). Dordrecht: Kluwer Academic Publishers. Search in Google Scholar

[15] Poncelet, D., Babak, V. G., Neufeld, R. J., Goosen, M. F. A, & Bugarski, B. (1999a). Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Advances in Colloid and Interface Science, 79, 213–228. DOI: 10.1016/S0001-8686(97)00037-7. http://dx.doi.org/10.1016/S0001-8686(97)00037-710.1016/S0001-8686(97)00037-7Search in Google Scholar

[16] Poncelet, D., Bugarski, B., Amsden, B. G., Zhu, J., Neufeld, R., & Goosen, M. F. A. (1994). A parallel-plate electrostatic droplet generator — Parameters affecting microbead size. Applied Microbiology and Biotechnology, 42, 251–255. DOI: 10.1007/BF00902725. http://dx.doi.org/10.1007/BF0090272510.1007/BF00902725Search in Google Scholar

[17] Poncelet, D., Neufeld, R. J., Goosen, M. F. A, Burgarski, B., & Babak, V. (1999b). Formation of microgel beads by electric dispersion of polymer solutions. AIChE Journal, 45, 2018–2023. DOI: 10.1002/aic.690450918. http://dx.doi.org/10.1002/aic.69045091810.1002/aic.690450918Search in Google Scholar

[18] Poncelet, D., Teunou, E., Desrumaux, A., & Della Valle, D. (2002). Emulsification and microencapsulation: State of art. Landbauforschung Völkenrode, SH241, 27–31. Search in Google Scholar

[19] Prüsse, U., Dalluhn, J., Breford, J., & Vorlop, K.-D. (2000). Production of spherical beads by JetCutting. Chemical Engineering & Technology, 23, 1105–1110. DOI: 10.1002/1521-4125(200012)23:12〈1105::AID-CEAT1105〉3.0.CO;2-V. http://dx.doi.org/10.1002/1521-4125(200012)23:12<1105::AID-CEAT1105>3.0.CO;2-V10.1002/1521-4125(200012)23:12<1105::AID-CEAT1105>3.0.CO;2-VSearch in Google Scholar

[20] Prüsse, U., Jahnz, U., Wittlich, P., Breford, J., & Vorlop, K.-D. (2002). Bead production with JetCutting and rotating disc/nozzle technologies. Landbauforschung Völkenrode, SH241, 1–10. Search in Google Scholar

[21] Prüsse, U., & Vorlop, K.-D. (2004). The JetCutter technology. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 295–309). Dordrecht: Kluwer Academic Publishers. Search in Google Scholar

[22] Rosiński, S., Lewińska, D., Migaj, M., Wozniewicz, B., Weryński, A. (2002). Electrostatic microencapsulation of parathyroid cells as a tool for the investigation of cell’s activity after transplantation. Landbauforschung Völkenrode, SH241, 47–50. Search in Google Scholar

[23] Schwinger, C., Koch, S., Jahnz, U., Wittlich, P., Rainov, N. G., Kressler, J. (2002). High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. Journal of Microencapsulation, 19, 273–280. DOI: 10.1080/02652040110105328. http://dx.doi.org/10.1080/0265204011010532810.1080/02652040110105328Search in Google Scholar

[24] Strand, B. L., Skjak-Braek, G., & Gaserod, O. (2004). Microcapsule formulation and formation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 165–183). Dordrecht: Kluwer Academic Publishers. Search in Google Scholar

[25] Vorlop, K.-D., & Klein, J. (1983). New developments in the field of cell immobilization — Formation of biocatalysts by ionotropic gelation. In R. M. Lafferty, & E. Maier (Eds.), Enzyme technology (pp. 221–235). Berlin: Springer. Search in Google Scholar

Published Online: 2008-6-30
Published in Print: 2008-8-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-008-0035-x/html
Scroll to top button