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 Abstract: Sequential pattern mining, which discovers the correlation relationships from the ordered list of 

events, is an important research field in data mining area.  In our study, we have developed a Sequential 

Pattern Tree structure to store both frequent and non-frequent items from sequence database. It requires only 

one scan of database to build the tree due to storage of non-frequent items which reduce the tree construction 
time considerably. Then, we have proposed an efficient Sequential Pattern Tree Mining algorithm which can 

generate frequent sequential patterns from the Sequential Pattern Tree recursively. The main advantage of this 

algorithm is to mine the complete set of frequent sequential patterns from the Sequential Pattern Tree without 

generating any intermediate projected tree. Again, it does not generate unnecessary candidate sequences and 

not require repeated scanning of the original database. We have compared our proposed approach with three 

existing algorithms and our performance study shows that, our algorithm is much faster than apriori based GSP 

algorithm and also faster than existing PrefixSpan and Tree Based Mining algorithm which are based on 

pattern growth approaches. 

Keywords: Data Mining, Sequence Database, Sequential Pattern, Sequential Pattern Mining, Frequent 

Patterns, Tree Based Mining.  

 

I. INTRODUCTION  
Sequential pattern mining in transactional databases plays an important role in data mining field. 

Sequential pattern mining means discovering all the frequently occurring ordered events or subsequences from 

sequence databases. The advantage to find the sequential patterns is, we can find the customer sequences and 

predict the probability to buy some items in next transactions by the customers. For example, if a customer 

bought α and β in one transaction, then, we can predict the probability to buy δ in the next transaction by that 

customer: that is, if {α, β} then {δ}. Sequential pattern mining is widely used in the analysis of customer 

shopping behavior, web access patterns, in the analysis of biological sequences, sequences of events in science 

and engineering, and in natural and social developments. Agrawal and Srikant first introduced sequential pattern 

mining in 1995 [1]. Based on their study, sequential pattern mining is stated as follows: “Given a sequence 
database or a set of sequences where each sequence is an ordered  list events or elements and each event or 

element is a set of items, and given a user-specific minimum support threshold or min_sup, sequential pattern 

mining is the process of finding the complete set of frequent subsequences, that is, the subsequences whose 

occurrence frequency in the set of sequences or sequence databases is greater than or equal to min_sup.”  Past 

studies developed two major classes of sequential pattern mining methods. First class proposed several mining 

algorithms [1] [2] [3] based on apriori property which states that, every nonempty subsequences of a sequential 

pattern are also a sequential pattern. Among them, GSP [2] and SPADE [3] are most efficient apriori based 

algorithms. Both of them find all sequential patterns by using level-wise candidate sequences generate and test 

approach which increase the time and space complexity. Another class proposed algorithms like FreeSpan [4] and 

PrefixSpan [5] based on pattern growth approach. Pattern growth approach does not generate any candidate 

sequences like apriori based methods GSP and SPADE, but it creates lots of projected databases and each time it 
needs to scan the projected databases to find the frequent items. Tree based sequential pattern mining [6] 

algorithm can generate frequent sequential patterns from the fast updated sequential pattern tree (called FUSP-

tree) [7] structure by recursively creating set of small projected trees from the large tree. Also, it requires two 

scans of original large database to build the FUSP-tree. Both intermediate small trees projection during mining 

and two scans of database increase the time and space complexity of this algorithm [6].  In this paper, we have 

developed an efficient Sequential Pattern Tree Mining algorithm which can generate complete set of frequent 

sequential patterns from a proposed Tree structure named Sequential Pattern Tree recursively. At first, our 

proposed Sequential Pattern Tree structure stores both frequent and non-frequent items from the sequence 

database.  To build this tree structure, we need only one scan of original large database due to storage of both 

frequent and non-frequent items in the tree. A new approach is used to store each item from each sequence into 

the Sequential Pattern Tree. Then, our proposed mining algorithm mines the complete set of frequent sequential 

patterns from the original Sequential Pattern Tree without re-constructing the intermediate projected trees. Also, 
our algorithm does not generate any candidate sequence and scan the original large database only when the tree is 

created that means it does not require repeated scanning of original database. The technique proposed for mining 
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in this paper present a much better performance than that achieved by GSP [2], PrefixSpan [5], and Tree Based 

Mining [6] techniques. 

In the rest of the paper, section II describes related works; section III introduces our concepts of Sequential 
Pattern Tree and Mining with examples. Performance analysis is shown in section IV and finally section V 

draws conclusion that points out the potentiality of our work.  
 

II. REVIEW OF WORKS  
We have studied a set of mining approaches to understand the effectiveness of pattern discovery in data 

mining field. Some of them are described sequentially in this section. 

 

1.1 GSP Algorithm  

GSP (Generalized Sequential Patterns) [2] is a sequential pattern mining algorithm which was proposed 
by Srikant and Agrawal in 1996. GSP is an Apriori based algorithm. It generates lots of candidate sets and it 

tests them by multiple passes. The algorithm to find the sequential patterns is outlined as follows: First, it scans 

the database to find the frequent items, that is, those with equal or greater than minimum support. All of those 

frequent items are length-1 frequent sequences. Second, each of them starts with a seed set of sequential 

patterns to generate new potentially sequential patterns, called candidate sequences. Each candidate sequence 

contains more than one item from which pattern it is generated. The length of each sequence is the number of 

instances of items in a sequence.  All of the candidate sequences have the same length in a given pass. To find 

the frequent sequence, the algorithm then scans the database and discards those candidates which are infrequent. 

Finally, after getting the frequent sequences it makes those sequences as the seed for the next pass. The 

algorithm terminates, when there are no frequent sequences at the end of a pass, or when there are no candidate 

sequences generated. 
 

1.2 PrefixSpan Algorithm 

PrefixSpan [5] is a projection-based, sequential pattern-growth approach for efficient and scalable 

mining of sequential patterns, which is an extension of FP-growth [8]. Unlike apriori-based algorithms it does 

not create large number of useless candidate sets and generates complete set of sequential patterns from large 

databases efficiently. The major cost of PrefixSpan is database projection, i.e., forming projected databases 

recursively. To find the sequential patterns, PrefixSpan recursively projects a sequence database into a set of 

small projected databases and sequential patterns are grown in each projected database by exploring only locally 

frequent fragments. In this approach, sequential patterns from sequence database can be mined by a prefix-

projection method in the following steps: (1) Find length-1 sequential patterns. Scan database once to find all 

the frequent items in sequences. Each of these frequent items is a length-1 sequential pattern. (2) Divide search 

space. The complete set of sequential patterns can be partitioned according to the number of length-1 sequential 
patterns (prefixes) found in step-1. (3) Find subsets of sequential patterns. The subsets of sequential patterns can 

be mined by constructing the corresponding set of projected databases and mining each recursively. 

 

1.3 FUSP – Tree Algorithm 

To efficiently mine the sequential patterns, Lin et al.2008 proposed the FUSP-tree [7] structure and its 

maintenance algorithm. FUSP-tree consists of one root node labeled as „root‟ and a set of prefix subtrees as the 

children of the root. Each node in the prefix subtrees contains item-name; which represents the node contains 

that item, count; the number of sequences represented by the section of the path reaching the node, and node-

link; links to the next node of that item in the next branch of the FUSP-tree. The FUSP-tree contains a Header-

Table which store frequent item, their count and the link of first occurrence node in the tree of that item. This 

table helps to find appropriate items or sequences in the tree. The construction process is similar to FP-tree [8] 
i.e. the construction process is executed tuple by tuple from first sequence to last. To create this tree, it requires 

two scans of large database which increases the time construction time. Mining process of FUSP-Tree [6] is 

almost similar to PrefixSpan [5] and FP-growth [8] algorithms. After the FUSP-Tree [7] is maintained, the final 

frequent sequences can then be found by a recursive method from the tree. This method finds the sequential 

patterns from the FUSP-Tree structure by generating set of small projected trees from the large tree recursively. 

It generates no candidate sets but it generates many projected trees for each prefix sequence which require more 

memory [6].  

 

III. PROPOSED APPROACH  
Here, we have described our proposed Sequential Pattern Tree structure and Sequential Pattern Mining 

approach for finding sequential patterns from sequence database. At first, our proposed approach constructs a 

Sequential Pattern Tree for both frequent and non-frequent items from the sequence database. Then, it generates 
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the complete set of frequent subsequences from the Sequential Pattern Tree without generating any intermediate 

projected tree. The algorithm for Sequential Pattern mining is given in Algorithm 1. 

Algorithm 1: (Sequential Pattern Mining: mining frequent subsequences from sequence database) 
Input: Sequence Database and Minimum Support Threshold (min_sup). 

Output: The complete set of sequential patterns. 

Method: 

1. Scan the sequence database once and construct a Sequential Pattern Tree using Algorithm 2. 

2. Recursively mines the original Sequential Pattern Tree to find the frequent sequential patterns using     

Algorithm 3. 

 

1.4 Construction of Sequential Pattern Tree 

In our study, a Sequential Pattern Tree data structure along with Header Table is used to store the 

sequence database. Each item in the events of a sequence is inserted as a node into the tree based on the events 

arranged in each sequence. Each sequence is a branch of the tree. This tree stores both frequent and non-frequent 
items. So, it requires only one scan of database to build the tree which reduces the tree construction time 

considerably. Each node in a Sequential Pattern Tree registers three pieces of information: label, count and 

Transaction ID (label: count: Transaction ID). Every node is labeled by an item in the event of a sequence. Count 

of a node determines the number of sequences that share this node in their paths. Transaction ID in a node is used 

to indicate if there exists sequence relation (s-relation) or itemset relation (i-relation) between two nodes. The root 

of the tree is a special virtual node with a label as Root, count 0, and transaction ID 0. Sequential Pattern Tree 

structure maintains a Header Table, where each distinct item in the event with their count is stored for sequential 

mining.  

The Sequential Pattern Tree is constructed as follows: Scans the sequence database and insert each item 

in the events of a sequence into the tree. The insertion of sequences is started from the root node of the tree. For 

each item e in the events, increment the count of child node with label e by 1 if there exists one child node with 

same label. Otherwise, create a child node labeled by e and set the count to 1. In this similar way, insert the rest of 
the items in the events of the sequence to the subtree rooted at that child node labeled e. The algorithm for 

constructing a Sequential Pattern Tree from sequence database is given in Algorithm 2. 

Algorithm 2: (Construction of Sequential Pattern Tree from Sequence Database) 

Input: Sequence Database. 

Output: Sequential Pattern Tree, T. 

Method: 

1 Scan the sequence database.  

2 Create the root node of a tree T and label  it as "Root", set count to 0 and transaction ID to 0. Initially 

current _node = root. 

3 for each sequence Si till the end of database 

3.1 for each event ej in Si 
3.1.1 for each item I in the ej 

3.1.1.1 if current_node has a child node c with c. label = I and c. transaction ID = j, then set c. count += 1 and 

current_node = c. 

3.1.1.2 Otherwise, 

3.1.1.2.1 Create a New node label as I 

3.1.1.2.2 New node. count = 1. 

3.1.1.2.3 New node. transaction ID = j. 

3.1.1.2.4 Store New node in the current_node's successor link. 

3.1.1.2.5 Set current_node = New node. 

3.1.1.3 end if  

3.1.1.4 For the new branch of each distinct item I, increment the count of the corresponding item I in the 

Header Table if item I already exist in the Header Table; otherwise, add item I in the Header Table and 
set count to 1. 

3.1.2 end for 

3.2 end for 

4  current_node = root. 

5 end for 

 
1.4.1 Example Construction of Sequential Pattern Tree 

Here, we will try to describe the algorithm for constructing of Sequential Pattern Tree by using an 

example. As input our algorithm just takes a sequence database. In our example, we have used a sequence 
database which is shown in Table 1.  
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Table 1 Original Sequence Database 
Sequence ID  Sequences 

10  a(abc)(ac) 

20 (ad)c(ae) 

30 a(abc)(af) 

40 (ab)(ad) 

 
The Sequential Pattern Tree for the sequence database shown in Table 1 is constructed as follows. Scan 

the database and find the first sequence a(abc)(ac). Insert this sequence into the initial tree with only one root 

node (Root: 0: 0). It creates a new node (a: 1: 1) (i.e. labeled as „a‟, with count set to 1 and set transaction ID to 1 

as „a‟ is in the first event of this sequence) as the child of the root node, and then derives the a-branch "(a: 1: 1) → 

(a: 1: 2) → (b: 1: 2) → (c: 1: 2) → (a: 1: 3) → (c: 1: 3)", in which arrows link from parent nodes to children 

nodes. Transaction ID of (a: 1: 2) is 2 because „a‟ is in the second event of this sequence. After insertion of the 

first sequence, we find first branch of the tree which is shown in Fig 1. Now, insert the second sequence (ad)c(ae). 

It starts from the root again. Since the root node already  has a child labeled with "a" and transaction ID of this 

node is also 1, then, a‟s count is just increased by 1, i.e., (a: 2: 1) now. But, next item, d in first event of second 

sequence does not match with the existing child node of node (a: 2: 1). So, create a new child node (d: 1: 1) of 

node (a: 2: 1) and then, derives the branch "(a: 2: 1) → (d: 1: 1) → (c: 1: 2) → (a: 1: 3) → (e: 1: 3)". Fig 2 shows 

the tree after insertion of the second sequence. Third sequence is almost similar to the first sequence. So, only 

increment the count of nodes of the first branch and insert the node (f: 1: 3) as the child node of node (a: 2: 3) 
shown in Fig 3. This process continues until there is no sequence in the sequence database. The complete 

Sequential Pattern Tree along with its Header Table is shown in Fig 4. 

 

1.4.2 Characteristics of Sequential Pattern Tree 

The key design points behind the Sequential Pattern Tree are summarized as follows: 

1. Sequential Pattern Tree is used to store sequence database in a compact data structure. Because, same 

sequences will share the same branch of the tree, only counts of the corresponding nodes increment. So, the size 

of the Sequential Pattern Tree is much smaller than the size of the sequence database. The height of the tree is one 

plus the maximum length of the sequences in the database. The number of leave nodes of the tree, i.e., tree width 

is the number of distinct sequences in the database.  

2. Each node stores the corresponding count of the item, so that, the mining algorithm can avoid the 
tedious support counting during mining. That means, it can reduce the repeated scanning of large database during 

mining.  

3. Transaction ID store in each node is used to easily indicate the sequence relation or itemset relation 

between nodes. Sequence relation means two nodes contain items from two different events of a sequence and 

itemset relation means two nodes contain items from the same event of a sequence. This new idea is shown in Fig 

5. There exists sequence relation between (a)(a) subsequence because Transaction IDs between these nodes are 

different and exists  itemset relation between (ab) subsequence as their Transaction IDs are same.  
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4. Links stored in the FUSP-Tree [7] and FP-Tree [8]  to find the next node of same item from the next 

branch help us to find the frequent items easily without scanning each projected tree but they require lot of 

efforts to update the link information in each projected tree. Our proposed tree structure avoid this extra burden  
by not storing this type of link information in the  tree, as our proposed mining algorithm ignores to generate 

intermediate projected trees during mining by using only the links of the children nodes . So that, our tree 

structure only links the children nodes from the parent.  

5. Non-frequent items stored in the Sequential Pattern Tree help us in two ways. One is, we require only 

one scan of database to construct the tree due to storage of non-frequent items that reduce the tree construction 

time considerably where FUSP-Tree [7] and FP-Tree [8] both require twice scans of database to construct the tree 

structure. Another one is, non-frequent items will help us during incremental mining. The main reason to use tree 

structure with stored non-frequent items for sequential mining is, when new sequences will come, it can easily 

update the original Sequential Pattern Tree by scanning only the new sequences without requiring to scan the 

whole updated database (old + new) and then, will be able to get the new frequent sequential patterns from the 

updated new Sequential Pattern Tree easily. Incremental mining will be described in our future work. 
From the above discussion, we can conclude that Sequential Pattern Tree is the most efficient tree 

structure for sequential pattern mining. But, due to storage of non-frequent items, it can require little more 

memory.  As memory is not too costly now-a-days, we concentrate only on performance enhancement rather than 

memory usage. Also, we want to mention that, we have tried to decrease some overhead of memory by not using 

link information and not generating projected trees during mining that can‟t  be done by other algorithms 

[6][8][9]. 

 

 
1.5 Mining Sequential Patterns from Sequential Pattern Tree 

In this paper, we have developed an efficient recursive algorithm to enumerate frequent sequential 

patterns from the Sequential Pattern Tree. This algorithm uses the original Sequential Pattern Tree for the entire 
mining and does not rebuild intermediate trees for projection databases during mining. It also does not generate 

candidate sets during mining.  

 

Prefix and Suffix Sequence: For any node labeled as ei, all the nodes in the path from root (excluded 

root) of the tree to this node (itself excluded) form a prefix sequence of ei. For example, in the Fig 6, for node 

(b: 2: 2), the prefix sequence is (a)(a). On the other hand, for any node labeled as ei, all the nodes in the path 

from ei (itself excluded) to leave node form a suffix sequence of ei. There are several children of ei in the tree, 

and each branch from a child to a leaf node will represent as a suffix sequence and all these suffix sequences are 

called the suffix tree of ei. For example, in the Fig 6, for node (b: 2: 2), the suffix sequences are (c)(ac) and 

(c)(af). These suffix sequences are called the suffix tree of node (b: 2: 2). Again, in the Fig 6, node (a: 4: 1) has 

four suffix sequences (abc)(ac), (abc)(af), (d)(c)(ae), and (b)(ad). All these suffix sequences are called the suffix 

tree of node (a: 4: 1) and node (a: 4: 1) is the root of this suffix tree. 
Why not Generate Projected Trees: The main advantage of our mining algorithm is, it does not 

generate any intermediate projected tree during mining. Unlike the FP- tree [8] and WAP-tree [9] mining 

algorithms which are based on finding common suffix sequence first, our mining algorithm finds the common 

prefix sequence first like [10]. The main idea is, find frequent events that occurred in the suffix tree of the last 

frequent event in an m- prefix sequence and add these frequent events to m- prefix sequence so that it can 

extend this subsequence to m+1 prefix sequence recursively. We can find any event from the suffix tree of a 

node labeled as ei by using the links of the children nodes of ei. We do not need to store the whole suffix tree 

physically. If we store only the node labeled as ei, then, using the links of the children nodes, we can find the 

frequent events from the suffix tree of ei. That's way, we use suffix rootsets that store only the first occurrence 
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nodes labeled as e1 of a prefix sequence, en…e2e1 from the suffix tree rooted at node e2. Rootsets are used to 

virtually represent the suffix trees without the need to physically store each suffix tree. In conclusion, our 

algorithm can avoid generating any projected tree during mining by storing only the root nodes of the suffix tree 
physically. 

 

1.5.1 Mining Approach 

The algorithm for mining frequent patterns from the Sequential Pattern Tree is described in Algorithm 3. 

This algorithm starts from the Header Table. Since the proposed tree stores both frequent and non-frequent items.  

So, during mining, the frequent items that satisfy the minimum support threshold are only taken into 

consideration and non-frequent items are discarded virtually. Meaning that, non-frequent items exist physically 

but they are not considered during mining. For each frequent item I in the Header Table, it always try to find the 

first-occurrence node with labeled I from each branch of the original tree and store these nodes in the rootset. The 

first-occurrence nodes  are found by using depth-first-search of the tree. The algorithm of finding the first-

occurrence node is given in Algorithm 4. 
This algorithm uses two rootsets, one to store the s-relation nodes and another to store the i-relation 

nodes related to item, I. If the sum of the counts of all nodes in the rootset for s-relation nodes related to I is 

greater than or equal to the minimum support threshold, then I is appended to the sequential pattern list. Next, 

using this rootset, find the next frequent prefix subsequence (I)(I1) or (II1) or both from the I-suffix tree. The same 

methodology is used for the rootset that store i-relation nodes. This procedure continues for each prefix 

subsequence until there is no suffix tree for that prefix subsequence for search. This method is performed for each 

frequent item in the Header Table to retrieve all sequential patterns. 

Algorithm 3: (SP-tree Mine (Rootset, F): Mining Sequential Patterns from Sequential Pattern Tree) 

Input: Sequential Pattern Tree with Header Table and Minimum Support Threshold (min_sup). 

Output: The Complete Set of Sequential Patterns. 

Global Variable: Rootset_s to store s-relation nodes, Rootset_i to store i-relation nodes, Track to store each root 

node. 
Other Variable: F to store frequent sequential patterns. 

Initial: Rootset_s stores root of the original tree. F set as null. At first, call the SP-tree Mine () of Algorithm 3 by 

passing Rootset_s and F as null. 

Method: 

1. for each frequent item I in the Header Table 

1.1. Rootset_s = new Rootset() 

1.2. Rootset_i = new Rootset() 

1.3. for each root node R of the Rootset 

1.3.1. Track = R 

1.3.2. for each child node N of R 

1.3.2.1.  First-occurrence-node(I,N,0,0) [Describe in Algorithm 4] 
1.3.3. end for 

1.4.  end for 

1.5. if (the sum of the counts of root nodes in the Rootset_s  ≥  min_sup), then 

1.5.1.  F´ = F U (I) 

1.5.2. Call SP-tree Mine (Rootset_s, F´) 

1.6. end if 

1.7. if (the sum of the counts of root nodes in the Rootset_i  ≥  min_sup) ,then 

1.7.1.  F´ = (F U I) 

1.7.2. Call SP-tree Mine (Rootset_i, F´) 

1.8. end if 

2.  end for 

 
Algorithm 4: (First-occurrence-node (I, N, Mark_s, Mark_i): To Find First Occurrence Node that Labeled as I 

from Sequential Pattern Tree). 

Input: Frequent Item, I and child node N of root node R from Rootset, Mark_s variable use to find only one s-

relation node labeled as I from a branch and Mark_i variable use to find only one i-relation node labeled as I from 

a branch. 

Output: The First Occurrence nodes those Labeled as I from each branch. 

Global Variable: Mark variable use to keep track if the parent node's label of a node equal to the root node's 

label. Initially, Mark set as 0. 

Method: 

1. if (N. label = Track. label) 
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1.1. set Mark as N.transaction ID 

2.  end if 

3. if ( N. label = I), then 
3.1. if (N. transaction ID = Track. transaction ID && Mark_i = 0 ) 

3.1.1. Append N to Rootset_i 

3.1.2. Mark_i set as 1 

3.2. else if (N. transaction ID != Track. transaction ID && Mark = N. transacttion ID && Mark_i = 0) 

3.2.1.  Append N to Rootset_i 

3.2.2.  Mark_i set as 1 

3.3. else if (N. transaction ID != Track. transaction ID && Mark != N. transacttion ID && Mark_s = 0) 

3.3.1.  Append N to Rootset_s 

3.3.2.  Mark_s set as 1 

3.4. end if 

4.  end if 
5. for each child node, n of node N 

5.1. First-occurrence-node (I, n, Mark_s, Mark_i) 

6. end for 

 
1.5.2 Example Mining Sequential Pattern from Sequential Pattern Tree 

Here, we illustrate an example to better understand the proposed mining algorithm. To mine the 

sequential patterns, consider the Sequential Pattern Tree along with Header Table shown in Fig 4. Suppose the 

minimum support threshold is 50% or 2 (4*50% = 2). The first item in the Header Table is 'a'. From the Root 

node of the tree find the first occurrence nodes labeled as 'a' using depth-first-search. The first occurrence node of 
item 'a' is (a: 4: 1) node shown in Fig 7. The count of this node is 4 ≥ minimum support threshold. Transaction ID 

of node (a: 4: 1) is 1 which is not matched with the transaction ID of Root node, 0. So, the frequent sequential 

pattern is (a) and now the list of mined frequent sequential patterns is {(a): 4}. The mining of frequent 2-

sequences that start with item 'a' would continue with the suffix tree rooted at node (a: 4: 1). Again, for item 'a' in 

the Header Table, starts searching to find first occurrence nodes labeled as 'a' from the root node (a: 4: 1). The 

first occurrence nodes labeled as 'a' from suffix tree of root node (a: 4: 1) are (a: 2: 2), (a: 1: 3) and (a: 1: 2) shown 

in Fig 8. The sum of counts of these nodes is 4 ≥ minimum support threshold. Transaction IDs of these nodes are 

not matched with the transaction ID of node (a: 4: 1). So, the frequent sequential pattern is (a)(a) and now the list 

of mined frequent sequential patterns is {(a): 4, (a)(a): 4}. Again, for item 'a' in the Header Table, find first 

occurrence node (a: 2: 3) labeled as 'a' from the suffix trees of root node (a: 2: 2), (a: 1: 3) and (a: 1: 2) shown in 

Fig 9. Only one node (a: 2: 3) is found from  the suffix tree rooted at node (a: 2: 2). The count of node (a: 2: 3) is 

2 ≥ minimum support threshold. Transaction ID of this node is not matched with the transaction ID of node (a: 2: 
2). So, the frequent sequential pattern is (a)(a)(a) and now the list of mined frequent sequential patterns is {(a): 4, 

(a)(a): 4, (a)(a)(a): 2}. No frequent 4-sequences exist for (a)(a)(a) sequence. So, stop here. 

Backtrack and start again for item 'b' in the Header Table and find the first occurrence node (b: 2: 2) 

labeled as 'b' from the suffix tree rooted at node (a: 2: 2) shown in Fig 10. The count of this node is 2 ≥ minimum 

support threshold. Transaction ID of node (b: 2: 2) is matched with the transaction ID of node (a: 2: 2). So, node 

(b: 2: 2) is considered as i-relation node of (a: 2: 2). So, the frequent sequential pattern is (a)(ab) and this time, the 

list of mined frequent sequential patterns is {(a): 4, (a)(a): 4, (a)(a)(a): 2, (a)(ab): 2}. 

Continue this process for the frequent 4-sequences of subsequence (a)(ab) from the suffix tree rooted at 

(b: 2: 2) and find  frequent pattern (a)(ab)(a): 2 shown in Fig 11. We can see Fig 12 to understand in which order 

frequent sequential patterns are generated during mining. 

Using this same methodology, we can find the complete  set of frequent sequential patterns starting with 
item 'a' and the sequential patterns are {(a): 4, (a)(a): 4, (a)(a)(a): 2, (a)(ab): 2, (a)(ab)(a): 2, (a)(abc): 2, 

(a)(abc)(a): 2, (a)(ac): 2, (a)(ac)(a): 2, (a)(b): 2, (a)(b)(a): 2, (a)(bc): 2, (a)(bc)(a): 2, (ab): 3, (ab)(a): 3, (abc): 2, 

(abc)(a): 2, (a)(c): 3, (a)(c)(a): 3, (ac): 2, (ac)(a): 2, (ad): 2}. This process will be repeated for the frequent items b, 

c, and d that are stored in the Header Table. Header Table also stores item e: 1 and f: 1 but they are non-frequent 

items means they does not satisfy minimum support threshold which is 2. So that, they physically exist in the tree 

but they are not considered during mining. Finally, the complete set of frequent sequential patterns are {(a): 4, 

(a)(a): 4, (a)(a)(a): 2, (a)(ab): 2, (a)(ab)(a): 2, (a)(abc): 2, (a)(abc)(a): 2, (a)(ac): 2, (a)(ac)(a): 2, (a)(b): 2, (a)(b)(a): 

2, (a)(bc): 2, (a)(bc)(a): 2, (ab): 3, (ab)(a): 3, (abc): 2, (abc)(a): 2, (a)(c): 3, (a)(c)(a): 3, (ac): 2, (ac)(a): 2, (ad): 2, 

(b): 3, (b)(a): 3, (bc): 2, (bc)(a): 2, (c): 3, (c)(a): 3, (d): 2}. 

 

IV. PERFORMANCE ANALYSIS  
In this section, we represent a performance comparison of proposed Sequential Pattern Tree Mining 

approach with GSP, PrefixSpan and Tree Based Mining on both synthetic and real-life datasets. All the 
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experiments were conducted on a 2.80-GHz Intel(R) Pentium(R) D processor with 1.5GB main memory, 
running on Microsoft Windows 7. All the programs were written in NetBeans IDE 6.8 with JDK 6. We did not 

directly compare our data with those in some published reports running on different machines. Instead, we also 
implemented GSP, PrefixSpan and Tree Based Mining algorithms to the best of our knowledge based on the 

published reports on the same machine and compared these four algorithms in the same running environment. 

1.6 Datasets 

We have used four datasets, three real-datasets, BMS-WebView-1 [11], BMS-WebView-2 [11], and 

BMS-POS [11], as well as a Synthetic dataset T10I4D100K [11] for evaluation of experimental results. We use 

these datasets by considering each transaction as a sequence and each item of the transaction as a single item 

element in that sequence. Obviously, while considering these datasets for sequential pattern mining, they will 

also generate long sequential patterns. The properties of these datasets, in terms of the number of distinct items, 

the number of sequences, the maximum sequence size, the average sequence size, and type are shown below by 

Table 2. 

 
Table 2 Properties of Experimental Datasets 

Dataset Distinct 

Items 

No. of 

Sequences 

Max 

Size 

Avg 

Size 

Type 

T10I4D100K 870 100000 29 10.1 Synthetic 

BMS-WebView-1 497 59602 267 2.5 Real 

BMS-WebView-2 3340 77512 161 5.0 Real 

BMS-POS 1657 515597 164 6.5 Real 

 

1.7 Experimental Result 

Comparisons between GSP, PrefixSpan, Tree Based mining and Sequential Pattern Tree mining 

algorithms for different minimum support threshold values for these datasets are shown in this section. 

All the experimental results in Fig 13, 14, 15, and 16 are depicted to show the execution time of the four 
algorithms at different support thresholds.  It can be observed from these figures that, our Sequential Pattern Tree 

mining approach performs much better than apriori based GSP algorithm and also outperforms PrefixSpan and 

Tree Based Mining which are pattern growth approaches. This is also to be mentioned that, our proposed 

approach generates same number of sequential patterns for different minimum support thresholds as generated by 

GSP, PrefixSpan, and Tree Based Mining algorithms shown in Fig 17, 18, 19,  and 20 respectively. 

 

V. CONCLUSION  
In this paper, we have proposed an efficient Sequential Pattern Tree Mining algorithm which can 

generate the complete set of frequent sequential patterns from a Sequential Pattern Tree without generating any 
candidate sequence and any intermediate projected tree that reduce the both space and time complexity. It does 

not generate projected trees during mining by finding the first occurrence nodes from the suffix trees of prefix 

subsequences. Also, it reduces the effort of repeated scanning of database due to storage of count in the tree‟s 

node that help us to enhance the performance of our algorithm. This approach first generates a Sequential Pattern 

Tree from the sequence database which stores both frequent and non-frequent items. So that, it requires only one 

scan of sequence database to create the tree along with Header Table which also reduces the tree construction 

time considerably. Again, our proposed approach reduces the usage of memory by storing only essential 

information in the tree and by not generating projected trees during mining. Although we require little more 

memory for storing non-frequent items in the tree, but in future we will be able to achieve better performance for 

incremental mining because of these stored non-frequent items. We will show this in our future work. So that, we 

can ignore this memory usage issue for the benefit of performance enhancement as memory is not so expensive at 
the present time.  
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              Figure 1: First Occurrence Node of  „a‟ for “(a)"  

    Figure 2: First Occurrence Nodes of  „a‟  for “(a)(a)" 

 
              Figure 3: First Occurrence Node of  „a‟ for "(a)(a)(a)" 

 
        Figure 4: First Occurrence Node of  „b‟ for "(a)(ab)" 

 
              Figure 5: First Occurrence Node of „a‟ for "(a)(ab)(a)" 

             
Figure 6: Order to Generate Frequent Sequential Patterns 
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Figure 7: Comparisons Between Execution Time and 
Minimum Support for T10I4D100K 

 
Figure 8: Comparisons Between Execution Time and 
Minimum Support for BMS-WebView-1 

 
Figure 9: Comparisons Between Execution Time and 
Minimum Support for BMS-WebView-2 

 
Figure 10: Comparisons Between Execution Time and 
Minimum Support for BMS-POS 

 
Figure 11: Comparisons Between No. of Sequential Patterns 
and Minimum Support for T10I4D100K 

 
Figure 12: Comparisons Between No. of Sequential 
Patterns and Minimum Support for BMS-WebView-1 

 

 
 Figure 19: Comparisons Between No. of Sequential Patterns 
and Minimum Support for BMS-WebView-2 

 
Figure 13: Comparisons Between No. of Sequential 
Patterns and Minimum Support for BMS-POS 
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