Correlation between gene mutation status and molecular subtypes
Kidney Renal Papillary Cell Carcinoma (Primary solid tumor)
21 April 2013  |  analyses__2013_04_21
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Kidney Renal Papillary Cell Carcinoma (Primary solid tumor cohort) - 21 April 2013: Correlation between gene mutation status and molecular subtypes. Broad Institute of MIT and Harvard. doi:10.7908/C1BV7DJK
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and molecular subtypes.

Summary

Testing the association between mutation status of 9 genes and 8 molecular subtypes across 111 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.

  • No gene mutations related to molecuar subtypes.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 9 genes and 8 molecular subtypes. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, no significant finding detected.

Clinical
Features
MRNA
CNMF
MRNA
CHIERARCHICAL
CN
CNMF
METHLYATION
CNMF
MRNASEQ
CNMF
MRNASEQ
CHIERARCHICAL
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
nMutated (%) nWild-Type Fisher's exact test Fisher's exact test Chi-square test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
MET 9 (8%) 102 1
(1.00)
0.346
(1.00)
0.502
(1.00)
0.773
(1.00)
0.752
(1.00)
0.0974
(1.00)
0.0934
(1.00)
IL32 4 (4%) 107 0.2
(1.00)
0.0522
(1.00)
0.649
(1.00)
0.603
(1.00)
0.129
(1.00)
0.803
(1.00)
CDC27 4 (4%) 107 0.785
(1.00)
0.571
(1.00)
0.84
(1.00)
1
(1.00)
0.334
(1.00)
0.381
(1.00)
NF2 7 (6%) 104 0.0754
(1.00)
0.0298
(1.00)
0.23
(1.00)
0.104
(1.00)
0.789
(1.00)
1
(1.00)
SFRS2IP 5 (5%) 106 0.659
(1.00)
0.507
(1.00)
0.116
(1.00)
0.681
(1.00)
0.389
(1.00)
0.923
(1.00)
PPARGC1B 3 (3%) 108 0.2
(1.00)
0.194
(1.00)
0.189
(1.00)
0.0601
(1.00)
LGI4 4 (4%) 107 0.441
(1.00)
0.688
(1.00)
0.686
(1.00)
1
(1.00)
0.0436
(1.00)
0.24
(1.00)
RPTN 3 (3%) 108 0.2
(1.00)
0.121
(1.00)
0.522
(1.00)
0.0436
(1.00)
BHMT 4 (4%) 107 0.457
(1.00)
0.571
(1.00)
0.769
(1.00)
0.323
(1.00)
0.69
(1.00)
0.803
(1.00)
Methods & Data
Input
  • Mutation data file = KIRP-TP.mutsig.cluster.txt

  • Molecular subtypes file = KIRP-TP.transferedmergedcluster.txt

  • Number of patients = 111

  • Number of significantly mutated genes = 9

  • Number of Molecular subtypes = 8

  • Exclude genes that fewer than K tumors have mutations, K = 3

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[2] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[3] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)