DOI QR코드

DOI QR Code

Classification of Convective/Stratiform Radar Echoes over a Summer Monsoon Front, and Their Optimal Use with TRMM PR Data

  • Oh, Hyun-Mi (Division of Earth Environmental System, College of Natural Science, Pusan National University) ;
  • Heo, Ki-Young (Division of Earth Environmental System, College of Natural Science, Pusan National University) ;
  • Ha, Kyung-Ja (Division of Earth Environmental System, College of Natural Science, Pusan National University)
  • Published : 2009.12.30

Abstract

Convective/stratiform radar echo classification schemes by Steiner et al. (1995) and Biggerstaff and Listemaa (2000) are examined on a monsoonal front during the summer monsoon-Changma period, which is organized as a cloud cluster with mesoscale convective complex. Target radar is S-band with wavelength of 10cm, spatial resolution of 1km, elevation angle interval of 0.5-1.0 degree, and minimum elevation angle of 0.19 degree at Jindo over the Korean Peninsula. For verification of rainfall amount retrieved from the echo classification, ground-based rain gauge observations (Automatic Weather Stations) are examined, converting the radar echo grid data to the station values using the inverse distance weighted method. Improvement from the echo classification is evaluated based on the correlation coefficient and the scattered diagram. Additionally, an optimal use method was designed to produce combined rainfalls from the radar echo and Tropical Rainfall Measuring Mission Precipitation Radar (TRMM/PR) data. Optimal values for the radar rain and TRMM/PR rain are inversely weighted according to the error variance statistics for each single station. It is noted how the rainfall distribution during the summer monsoon frontal system is improved from the classification of convective/stratiform echo and the use of the optimal use technique.

Keywords

References

  1. Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997. Rain type classification algorithm for TRMM precipitation radar. Proc. IGARSS 1997, Singapore, 4: 1633-1635
  2. Biggerstaff, M. I. and S. A. Listemaa, 2000. An improved scheme for convective/stratiform echo classification using radar reflectivity. J. Appl., Meteorol., 39: 2129-2150 https://doi.org/10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2
  3. Churchill, D. D. and R. A. Houze Jr., 1984. Development and structure of winter monsoon and cloud clusters on 10 December 1979. J. Atmos. Sci., 41: 933-960 https://doi.org/10.1175/1520-0469(1984)041<0933:DASOWM>2.0.CO;2
  4. Ha, K.-J., S. -K. Park, and K.-Y. Kim, 2005. On interannual characteristics of climate prediction center merged analysis precipitation over the Korean peninsula during the summer monsoon season. Int. J. Climatol., 25: 99-116 https://doi.org/10.1002/joc.1116
  5. Ha, K.-J., K.-S. Yun, J.-G. Jhun, and C.-K. Park, 2005. Definition of onset/retreat and intensity of changma during the boreal summer monsoon season. J. Korean Meteor. Soc., 41(6): 927-942
  6. Houze Jr., R. A., 1982. Cloud clusters and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan, 60: 396-410 https://doi.org/10.2151/jmsj1965.60.1_396
  7. Iguchi, T. and R. Meneghini, 1994. Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11, 1507-1517 https://doi.org/10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2
  8. Leary, C. A. and R. A. Houze Jr., 1979. Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36: 669-679 https://doi.org/10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2
  9. Marshall, J. S., W. Hitschfeld, and K. L. S. Gunn, 1955. Advances in radar weather. . 2: 1-56 https://doi.org/10.1016/S0065-2687(08)60310-6
  10. North, G. R. and S. Nakamoto, 1989. Formalism for comparing rain estimation designs. J. Atmos. Oceanic Technol., 6: 985-992 https://doi.org/10.1175/1520-0426(1989)006<0985:FFCRED>2.0.CO;2
  11. North, G. R., Samuel S. P. Shen, and R. B. Upson, 1991. Combining rain gauges with satellite measurements for optimal estimates of areatime averaged rain rates. Water Resour. Res., 27: 2785-2790 https://doi.org/10.1029/91WR01744
  12. Oh, H.-M., K.-J. Ha, and K.-Y. Heo, 2006. Estimation of quantitative precipitation rate using an optimal weighting method with radar estimated rainrate and AWS rainrate. Korean J. Rem. Sens., 22: 485-493 https://doi.org/10.7780/kjrs.2006.22.6.485
  13. Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2004. Spectral retrieval of latent heating profiles from TRMM PR data. part I: development of a model-based algorithm. J. Appl., Meteorol., 43: 1095-1113 https://doi.org/10.1029/2001GL014113
  14. Short, D. A., T. Kozu, and K. Nakamura, 1990: Rainrate and raindrop size distribution observations in Darwin Australia. Proc. URSI 1990, Brazil, 35-40
  15. Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of threedimensional storm structure from operational radar and rain gauge data. J. Appl., Meteorol., 34: 1978-2007 https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2
  16. Steiner, M. and R. A. Houze Jr., 1997. Sensitivity of the estimated monthly convective rain fraction to the choice of Z-R relation. J. of Appl. Meteorol., 36: 452-462 https://doi.org/10.1175/1520-0450(1997)036<0452:SOTEMC>2.0.CO;2
  17. Tokay A. and D. A. Short, 1996. Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds, J. Appl. Meteor., 35: 355-371 https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
  18. Takayabu, Y. N., 2002. Spectral representation of rain profiles and diurnal variations observed with TRMM PR over equatorial area. Geophys. Res. Lett., 29: 1584 https://doi.org/10.1029/2001GL014113