All Issue

2019 Vol.32, Issue 2 Preview Page
2019. pp. 103-108
Abstract
References
1
Antonelli, G.A., Perrin, B., Daly, B.C., Cahill D.G. (2006) Characterization of Mechanical and Thermal Properties Using Ultrafast Optical Metrology, MRS Bulletin, 31, pp.607~613. 10.1557/mrs2006.157
10.1557/mrs2006.157
2
Cho, M., Choi, J., Jung, K. (2007) Multi-scale Analysis of Thin Film Considering Surface Effects, J. Comput. Struct. Eng. Inst. Korea, 20, pp. 287~292.
3
Feng, B., Li, Z., Zhang, X. (2009) Prediction of Size Effect on Thermal Conductivity of Nanoscale Metallic Films, Thin Solid Films, 517, pp. 2803~2807. 10.1016/j.tsf.2008.10.116
10.1016/j.tsf.2008.10.116
4
Frenkel, D., Smit, B. (1996) Understanding Molecular Simulation, San Diego, USA: Academic Press Inc.
5
Hopkins, P.E. (2013) Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance, ISRN Mech. Eng., 2013. 10.1155/2013/682586
10.1155/2013/682586
6
Ikeshoji, T., Hafskjold, B. (1993) Non-equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and Through Liquid-gas Interface, Mol. Phys., 81, pp.251~261. 10.1080/00268979400100171
10.1080/00268979400100171
7
Jelinek, B., Groh, S., Horstemeyer, M.F., Houze, J., Kim, S.G., Wagner, J.G., Moitra, A., Baskes, M.I. (2012) Modified Embedded Atom Method Potential for Al, Si, Mg, Cu, and Fe Alloys, Phys. Rev. B, 85(24), p.245102. 10.1103/PhysRevB.85.245102
10.1103/PhysRevB.85.245102
8
Jung, G., Zhou, M., Cho, M. (2012) Analysis on Thermomechanical Response to Tensile Deformation of GaN Nanowires, J. Comput. Struct. Eng. Inst. Korea, 25, pp.301~305. 10.7734/COSEIK.2012.25.4.301
10.7734/COSEIK.2012.25.4.301
9
Kim, Y.Y., Krishnaswamy, S. (2012) Non-destructive Evaluation of Material Properties of Nanoscale Thin-films Using Ultrafast Optical Pump-probe Methods, J. Korean Soc. Nondestruct. Test., 35, pp.115~121. 10.7779/JKSNT.2012.32.2.115
10.7779/JKSNT.2012.32.2.115
10
Müller-Plathe, F. (1997) A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity, J. Chem. Phys., 106, p. 6082. 10.1063/1.473271
10.1063/1.473271
11
Plimpton, S. (1995) Fast Pparallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117, pp.1~19. 10.1006/jcph.1995.1039
10.1006/jcph.1995.1039
12
Richardson, C.J.K., Spicer, J.B. (2003) Characterization of Heat-treated Tungsten Thin Films Using Picosecond Duration Thermoelastic Transients, Optics & Lasers Eng., 40, pp. 379~391. 10.1016/S0143-8166(02)00090-8
10.1016/S0143-8166(02)00090-8
13
Shin, H., Yang, S., Yu, S., Chang, S., Cho, M. (2012) A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance, J. Comput. Struct. Eng. Inst. Korea, 25, pp.315~321. 10.7734/COSEIK.2012.25.4.315
10.7734/COSEIK.2012.25.4.315
14
Stevens, R.J., Smith, A.N., Norris, P.M. (2005) Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique, J. Heat Transf., 127, pp. 315~322. 10.1115/1.1857944
10.1115/1.1857944
15
Stoner, R.J., Maris, H.J. (1993) Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300K, Phys. Rev.B, 48, pp.16373~16387. 10.1103/PhysRevB.48.16373
10.1103/PhysRevB.48.1637310008218
16
Yang, N., Luo, T., Esfarjani, K., Henry, A., Tian, Z., Shiomi, J., Chalopin, Y., Li, B., Chen, G. (2015) Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations, J. Comput. & Theor. Nanosci., 12, pp.168~174. 10.1166/jctn.2015.3710
10.1166/jctn.2015.3710
Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 32
  • No :2
  • Pages :103-108
  • Received Date : 2018-11-06
  • Revised Date : 2019-01-15
  • Accepted Date : 2019-01-16