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Abstract: The aim of our research was to elaborate the framework and solution process of 
the optimization of the linear traffic distribution problem based on the road toll structure, 
assuming an intelligent and autonomous transportation system. In this article, framework of 
the problem has been defined based on a linear programming approach, applying pre-defined 
demand structure and network characteristics. Traffic volume values of the network have been 
estimated and distributed as a function of the road toll structure, considering the costs of 
the routes as variables. Applicability of the model has been proved on a simplified example. 
Based on the results of the research, optimal static solution of the traffic distribution problem 
can be determined in a given sample time period by modifying the road toll system, based 
on pre-defined conditions.
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1. Introduction

As the availability of automatization and 
smart technologies are getting easier and 
easier, the intelligence of transport systems 
(Cavone et al., 2017) is increasing dynamically. 
An important objective of new innovative 
mobility solutions is to facilitate accessibility 
of t ranspor t systems and improv ing 
integration of new concepts (Přibyl and 
Svítek, 2015), hence the paper aims to develop 
a new linear optimization model (Hu and 
Kahng, 2016), which makes it possible to 
allocate travel demand to transport network 
components assuming the existence of a smart 
autonomous transport system maximizing 
operation efficiency of the network (Ma et 

al., 2017). Traffic distribution problem has 
been discussed in scientific researches (Ryu 
et al., 2017; Ma and Qian, 2017), but these are 
mainly limited on business oriented fields 
such as freight transportation and logistics 
(Ansari et al., 2017) and rarely considering 
passenger transportation systems and the 
constrained infrastructure capacities. In our 
research, a well adaptable linear programming 
approach has been implemented to determine 
stat ic system optimum of the tra f f ic 
distribution problem, as linear approach 
proved to be useful for estimating traffic 
volumes (Apronti et al., 2016) as well as 
for optimizing infrastructural elements 
(Kurczveil and Becker, 2016). The model 
development process has been implemented 
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in two phases. In the first module a non-
commercialized transport system has been 
modeled which considered traffic volumes as 
the basic system variable, while in the final 
model road toll has been defined as the basic 
variable supplemented by traffic volumes 
loaded to fictive edges (defined as fictive part 
f low) as additional system variables (Pauer 
and Török, 2017).

2. Methodology 

The aim of the considered traffic distribution 
problem was to define the minimum of 
total travel time depending on total traffic 
appeared on a transportation network 
in a sample time period of the model by 
estimating the volume of traff ic f lows 
depending on the road toll structure. Thus, 
traffic has not been directly distributed 
on the network, but by modifying the toll 
values (cost of edges) as system variables 
(Yang, 2016). Thereby demand function 
characterizing road users’ willingness to 
pay has been considered to determine the 
minimum load level of the system satisfying 

the most transport demands (Yakimov, 
2017). 

The investigated transportation system 
and its elements were assumed to be 
fully autonomous in order to assign trip 
distr ibution tasks and users’ decision 
processes under the control of the system, 
providing the necessary requirements to 
achieve system optimum. Characteristics 
of the network elements, transport demands 
and alternative routes between the origin-
destination zones (OD zones) have been 
considered as pre-defined static parameters 
(Kumar et al . , 2016). The minimized 
objective function has been derived from 
the sum of products of traffic volumes of 
routes (part-flows) and related travel times. 

Framework of the traf f ic distr ibution 
problem has been elaborated based on 
linear programming approach, related to the 
following example. The transport network has 
been considered as follows in Fig. 1, where 
the possible origin zones were S and T, while 
the possible destination zones were W and Z.

Fig. 1.
Representing Graph of the Investigated Network
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Even in case of our simplified network, as well 
as in case of real transportation networks, 
there exist more alternative routes between 
OD zones. Routes were built up from graph 
edges (uj). Capacity of edges (cj) represented 
the maximum possible number of travelers 
on a road in a given sample time period, travel 
time of the edges (tj) represented the time 
needed to travel through the investigated 
infrastructure element. These parameters, 
as well as the transport demands (D) have 
been considered as constant, pre-defined 
data when determining the static system 
optimum of the problem. Road toll structure 
has been considered by the costs of travelling 
on the elements of the road network (kj was 
the cost of travelling through edge j). The 
cost of travelling through i-th route (Ki) 
was equal to the sum of the costs of the 
edges constructing the i-th route. Volumes 
of traffic on the routes (part-f lows) have 
been estimated based on the road users’ 
willingness to pay for a route, which has 
been approximated by a linear function in 
our research. 

The above introduced problem has been 
described as a linear programming problem. 
The variables of the model were the cost 
of the edges, which have been used to 
determine the part-f lows of the alternative 
routes. Constraints have been derived from 
the capacity values of the edges and the travel 
demands appeared in a sample time period 
between OD pairs. The minimized objective 
function was the sum of products of the part-
f lows and travel time values of edges in a 
sample time period, while the most transport 
demands had to be satisfied.

When elaborating the framework of the 
optimization process, first step was the 
identification of possible alternative routes 
(Ui) in the investigated transportation 

network, and the assignment of the part-
f lows (xi) among them, as presented below:

From zone S to W:
Alternative route: USW1: u3-u4-u2; part-f low 
of route: x1
Alternative route: USW2: u3-u6-u9-u7-u2; part-
f low of route: x2

From zone S to Z:
Alternative route: USZ1: u3-u4-u7-u10; part-flow 
of route: x3
Alternative route: USZ2: u3-u6-u9-u10; part-flow 
of route: x4

From zone T to W:
Alternative route: UTW1: u11-u6-u4-u2; part-
f low of route: x5
Alternative route: UTW2: u11-u9-u7-u2; part-flow 
of route: x6

From zone T to Z:
Alternative route: UTZ1: u11-u9-u10; part-f low 
of route: x7
Alternative route: UTZ2: u11-u6-u4-u7-u10; part-
f low of route: x8

As part-f lows of the routes depended on 
the cost of these routes, those travellers 
have also been considered, for who none 
of the free routes were appropriate based 
on the function of the willingness to pay. 
Transport demands of them have not been 
satisfied (they failed to travel because they 
were unwilling to pay the given costs). 
According to the system concept, the system 
could determine so “high” toll that it resulted 
missed travels if the capacity of the network 
(or any part of the network) was less than 
the emerging transport demands.

To manage the problem, missed travels have 
been loaded on “fictive routes” during the 
optimization. Therefore, a fictive route pair 
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(with the same orientation as the real one) 
has been introduced for each real route as 
follows: U’SW1; U’SW2; U’SZ1; U’SZ2; U’TW1; U’TW2; 
U’TZ1; U’TZ2. These fictive routes consisted 
of f ictive edges (u’1-u’12) with the same 
orientation as the real edges.

In order to satisf y the most transport 
demands and avoid the use of f ict ive 
routes by the method when it was possible, 
extremely high travel t ime values for 
the edges of the fictive routes have been 
defined. Nevertheless, there was no need 
to constrain the capacity of the f ictive 
edges. Part-f low of fictive routes have been 
indicated respectively by xi, i=9...16, while 
traffic volume of the fictive edges have been 
indicated respectively by X’ j, j=1...12. In the 
framework of the solution, part-flows of the 
fictive routes have also been considered as 
variables, and have been taken into account 
when elaborating constraining conditions 
and the objective function. Note, that part-
f lows of the real routes were depending on 
the cost of the routes (willingness to pay 
function: xi(Ki), i=1...8).

Based on the considerations above, the 
following constraints have been introduced, 
as part of the framework of the solution 
process. 

Values of xi have been required to be a non-
negative integer (as it represents traffic 
volumes of edges), as defined in Eq. 1.

	 (1)

Values of the cost of the edges have been 
required to be non-negative, as defined in 
Eq. 2.

	 (2)

Since travel demands between OD zones 
have been considered as pre-def ined 
constant data, boundary conditions related 
to the traffic volume of the routes have been 
constructed according to Eq. 3-6., as travel 
demands between the OD zones have been 
distributed among the real and fictive routes 
between the corresponding zones.

	 (3)

	 (4)

	 (5)

	 (6)

In case of a linear optimization problem, 
constraining conditions, as well as the 
objective function have to be expressed in 
terms of the optimized variables. Hence, a 
12x8 sized coefficient matrix (A) has been 
constructed with its elements (aij) to describe 
the correspondences between the routes and 
the edges as follows: 
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This matrix made it possible to express the 
costs and traffic volumes of the routes based 
on the costs and traffic volumes of the edges. 
An arbitrary line of the matrix determined 
which routes contained the given edge 
(focusing on a line of the matrix: the value 
of a matrix component was 0 if the given 
edge was not part of the route described by 
the investigated column) and in accordance 
with this an arbitrary column of the matrix 
determined which edges were part of the 
given route (focusing on a column of the 
matrix: the value of a matrix component was 
0 if the given route did not contain the edge 
described by the investigated line).

Cost of the real routes have been described 
in terms of the optimized variables according 
to Eq. 7, as part-f lows of real routes were 
depending on the cost of the routes, based 
on the users’ willingness to pay, estimated 
by a linear function in our research.

	 (7)

T hus, when apply ing the elaborated 
framework, part-f lows of the real routes 
can be expressed in terms of the optimized 
variables (cost of the edges) based on Eq. 7 
and the willingness to pay function (xi(Ki), 
i=1...8) defined by the example.

In the next step constraining inequalities 
derived from the pre-defined capacity 
const ra i nts of rea l edges have been 
elaborated, as follows in Eq. 8. Traffic 
volume of the edges have been indicated 
by Xj, j=1...12.

	 (8)

Finally, the objective function has been 
defined. The aim was to minimize the total 
travel time of the vehicles go through the 
network in an investigated sample time period 
by varying the cost of the edges, and satisfying 
the most transport demands. Therefore, the 
objective function have been defined as the 
sum of products of total traffic and constant 
travel time of the real and fictive edges of the 
graph, as indicated in Eq. 9. 

	 (9)

As part-f lows of the fictive routes have also 
been involved in variables based on the 
introduced considerations, and have been 
taken into account in the objective function 
by using the traffic volume of the edges, 
we described the correspondences between 
traffic volumes of fictive routes and fictive 
edges in Eq. 10.

	 (10)

Therefore, framework of the optimization 
process has been elaborated by introducing 
equations 1-10, considering the constraining 
and boundary conditions as well as the 
objective function with linear formulas, 
based on static conditions and assumptions.

3. Verification of the Elaborated Method

Based on the elaborated framework, a 
simplif ied example has been solved to 
verify the introduced method. Pre-defined 
static parameters of the example have been 
considered as follows. In Table 1, transport 
demands between the OD zones have been 
introduced.
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Table 1
Transport Demands of the Transportation System

W Z
S 10 12
T 15 16

Values of capacity limits and travel time 
values of the edges of the investigated 
network have been defined in Table 2. As 
mentioned previously, extremely high travel 

time values for the fictive edges have been 
defined, while there was no need to constrain 
the capacity of these edges.

Table 2
Characteristics of the Edges of the Network

Edges (uj) Capacity (cj) Travel time (tj)
u1 20 3
u2 25 3
u3 25 3
u4 25 3
u5 30 3
u6 25 3
u7 20 3
u8 25 3
u9 30 3
u10 30 3
u11 35 3
u12 25 3

u’1- u’12 ∞ 300

The function describing the road users’ 
willingness to pay for a route (in terms of 
the cost of the routes) has been estimated by 
a linear function indicated in Eq. 11. 

	 (11)

The optimization problem has been solved 
with the intlinprog module of MATLAB 
software, which made it possible to constrain 
the value of some variables to integers. 

Based on the syntax of the coding scheme in 
MATLAB, the following input attributes had 
to be defined, beside the variables containing 
the pre-defined constant data:

•	 f: vector containing the coefficients of 
the objective function;

•	 intcon: vector containing the ordinal 
number of integer variables;

•	 Coeff: matrix containing coefficients of 
constraining inequalities;

•	 constr: vector containing constant 
components of constraining inequalities, 
considering that (Coeff*x ≤ constr);

•	 Aeq: matrix containing coefficients of 
constraining equalities;

•	 beq:  vec tor cont a i n i ng con st a nt 
components of constraining equalities, 
considering that (Aeq*x = beq);

•	 lb: a vector containing lower bounds 
of variables;
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where x was the vector of optimized variables 
(x=[k1, k2, …,k12, x9, x10, …,x16] 20 element 
vector in our example). Pre-defined constant 
data have been coded as follows: constant 
parameters of the function describing the 
willingness to pay have been stored in R=(-
3) and P=40 attributes, A auxiliary matrix 
has been stored as A, transport demands 
have been defined in D vector, capacity 
constraints of real edges have been defined 
in b vector and travel times of the real and 
fictive edges have been defined in t vector.

In intcon attribute, ordinal numbers of 
variables x9…x16 have been defined as these 
optimized variables have been constrained 
to be integer in the elaborated framework, 
while lb has been defined as a 20 element 
vector with only zeros, as all variables have 
been constrained to be greater than or equal 
to 0 (see Eq. 1 and Eq. 2).

The definition of Coeff, constr, Aeq, beq and f 
attributes required the application of some 

advanced conversions and transformations, 
as described in the following sections of 
the article.

3.1. Definition of Coeff and constr 
Attributes

C o e f f i c i e n t s  a n d  c o n s t a n t  t a g s  o f 
const ra i n i ng i nequa l it ies have been 
stored in Coeff matrix and constr vector. 
Considering the number of variables (20 
optimized variables), the constraining 
12 inequalities related to the capacity 
limit of real edges (see Eq. 8), and the 8 
inequalities related to part-f lows of real 
routes (see Eq. 1, where i=1…8)), the size 
of Coeff is 20x20, while constr is a 20 element 
column vector. Based on its structure, 
Coeff matrix can be divided to 4 quarters 
as indicated in Table 3. To def ine the 
elements of the matrix (coefficients related 
to variables), constraining inequalities have 
to be expressed in terms of the optimized 
variables.

Table 3
Structure of Coeff Matrix

k1 k2 … k12 x9 x10 … x16

X1

I. II.
X2

…
X12

x1

III. IV.
x2

…
x8

First two quarters of the matrix have 
been defined based on the constraining 
inequalities related to capacity constraints 
of the real edges, using Eq. 8 as a starting 
point. However, in Eq. 8, traffic volume of 
the edges have been expressed in terms of 

part-flows of real routes, so transformations 
were necessary to express them in terms 
of the optimized variables. Applying the 
introduced considerations of Eq. 11 and Eq. 
7, we can convert the inequalities as indicated 
in Eq. 12.
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	 (12)

After this conversion, traffic volumes of the 
edges have been expressed in terms of the 
optimized variables. Constant components 
then had to be rearranged f rom this 
expression to the right side of the inequalities 
and stored in constr vector. Furthermore, 
examining the coefficients related to P and 
R*kj in case of Eq. 12 (consisting of only 
the elements of A matrix), the following 
relationships can be observed: coefficients 
related to P are systematically the sum of 
rows of A matrix; coefficients related to R*kj 
are systematically the linear combinations 
of the j-th row of A matrix with all rows of 
the matrix. 

Apply ing these correspondences, and 
considering also that the necessary 12x12 
linear combinations can be constructed by 
multiplying A matrix with its transposed 
matrix, the inequalities described by Eq. 12 
have been written in a more clear form (Eq. 
13), where the optimized variables have been 
multiplied out and therefore corresponding 
coefficients and constant tags can be easily 
defined for the coding scheme of MATLAB.

Related to n-th edge: 

	 (13)

Based on these correspondences, elements 
of the first quarter of Coeff matrix have 
been defined as R*A*A’; elements of the 
second sextant of Coeff matrix were only 
zeros (as part-f lows of fictive routes were 
not included in these inequalities), while 
the first 12 elements of constr vector have 
been defined as b-P*sum(A’) (note, that the 
capacity constraints have been stored in 
b vector, while sum(A’) is the command in 
MATLAB to define a row-vector containing 

the sum of columns of A matrix).

The third and fourth quarters of Coeff and 
the last 8 elements of constr have been defined 
based on the inequalities that describe 
that part-f lows of real routes have to be 
non-negative, using Eq. 1 as starting point 
(considering i=1…8). Transformations have 
been applied again, as inequalities had to be 
expressed in terms of the optimized variables. 
Applying the introduced considerations of 
Eq. 11 and Eq. 7, the inequalities have been 
transformed as indicated in Eq. 14.

Related to i-th route: 

	 (14)

After this conversion, part-f lows of real 
edges have been expressed in terms of the 
optimized variables. Constant components 
(P in case of all inequalities here) then had 
to be rearranged from this expression to 
the right side of the inequalities and stored 
in constr vector. Examining the coefficients 
related to R*kj in case of Eq. 14 (consisting of 
only the elements of A matrix), the following 
relationships can be observed: coefficients 
related to R*kj are systematically the sum of 
the elements of the corresponding column 
of A matrix. Furthermore, it is necessary to 
multiply throughout the inequalities by (-1) 
as the relationship between Coeff and constr 
is in the form of Coeff*x ≤ constr.

Applying the above considerations Eq. 14 
can be written in a more clear form (Eq. 15), 
from which the corresponding coefficients 
and constant tags can be easily defined for 
the coding scheme of MATLAB.

Related to i-th route: 

	 (14)
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Based on these correspondences, elements 
of the third quarter of Coeff matrix have been 
defined as -R*A’; elements of the fourth sextant 
of Coeff matrix were only zeros (as part-flows 
of fictive routes were not included in these 
inequalities), while the last 8 elements of constr 
vector were all equal to P.

3.2. Definition of Aeq and beq Attributes

C o e f f i c i e n t s  a n d  c o n s t a n t  t a g s  o f 
constraining equalities have been stored 

in Aeq 4x 20 matr i x and beq 4 element 
column-vector, which have been defined 
based on the distribution of transport 
demands on the real and f ictive edges, 
using Equations 3-6 as a starting point. In 
case of these equations, transformations 
had to be applied as part-f lows of real 
routes had to be expressed in terms of 
the optimized variables. Applying the 
introduced considerations of Eq. 11 and 
Eq. 7, equal it ies have been converted 
according to Eq. 15-18.

	 (15)

	 (16)

	 (17)

	 (18)

A fter this conversion, traf f ic volumes 
of the real edges have been expressed in 
terms of the optimized variables (cost 
of edges), while traffic volume of fictive 
routes were included in the optimized 
variables. Constant components then had 
to be rearranged from this expression to 
the right side of the equalities and stored 
in beq vector. Furthermore, examining the 
coefficients related to R*kj in case of Eq. 
15-16 (consisting of only the elements of 
A matrix), the following relationships can 
be observed: coefficients related to R*kj are 
systematically the sum of those elements 
of A matrix, which are assigned by the j-th 

row and the first two columns of the matrix 
in case of Eq. 15, the j-th row and the third 
and fourth columns of the matrix in case of 
Eq. 16, the j-th row and the fifth and sixth 
columns of the matrix in case of Eq. 17, and 
the j-th row and the last two columns of the 
matrix in case of Eq. 18. 

Applying the above considerations, the 
constraining equalities have been defined 
in a more clear form (Eq. 19-22), where the 
optimized variables have been multiplied 
out and therefore corresponding coefficients 
and constant tags can be easily defined for 
the coding scheme of MATLAB.

	 (19)

	 (20)
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	 (21)

	 (22)

Based on these correspondences, elements 
of Aeq matrix have been defined. The first 
row of it has been introduced in the article 
as an example: Aeq(1,1:12)=R*(A(1:12,1)’
+A(1:12,2)’); Aeq(1,13:20)=[1,1,0,0,0,0,0,0]. 
Besides that, the elements of beq vector 
have been defined as D-2*P.

3.3. Definition of f Vector Representing 
the Coefficients of the Objective Function

Coefficients of the objective function have 
been stored in f 20 element vector. To define 
the elements of this vector, the objective 
function also had to be expressed in terms 
of the optimized variables, using Eq. 9 as a 
starting point, which contained the travel 
time values and traffic volumes of fictive 
and real edges. Traffic volumes of the real 
edges have already been expressed in terms 
of the optimized variables when determining 
Coeff matrix, (see the left side of Eq. 12). 
The vector containing the traffic volumes 
of f ictive edges can be constructed by 
multiplying A matrix by a vector containing 
the part-f lows of fictive routes as follows 
in Eq. 23, since A matrix describes the 
correspondences between routes and edges.

	 (23)

Using these correspondences, the following 
elements have been used to define f vector 
in the coding scheme of MATLAB: t 24 
element row-vector containing the travel 
time values of real and fictive edges; first 
12 rows of Coef f matrix describing the 
coefficients of the traffic volume of real 
edges (without the constant components 

that have been rearranged into constr vector, 
but these components have no effect on the 
optimal value of the variables, just on the 
value of the objective function); and the 
elements of A matrix which are exactly the 
coefficients related to the variables x9…
x16 in the expression describing the traffic 
volume of fictive edges (see Eq. 23, and note 
that cost of the edges were not included in 
Eq. 23, therefore the coefficients related 
to them were 0). To be able to construct f 
20 element vector, t 24 element row vector 
have been multiplied by V 24*20 element 
matrix, where V have been constructed as 
follows: first 12 row of V is the same as in 
Coeff, while the last 12 row of V have been 
constructed by zero values in case of the 
first 12 column (related to kj variables) and 
by A matrix in the last 8 columns (related 
to xi, i=9…16 variables), based on the above 
mentioned considerations. Thus f vector have 
been defined as f=t*V.

3.3. Results of the Optimization Example

Based on the introduced considerations 
and transformations, optimized values of 
the variables have been calculated by the 
intlinprog command of MATLAB as follows:

k 2 = 0 , 3 3 3 3 ;  k 3 = 0 , 6 6 6 7 ;  k 4 = 9 ; 
k 6 = 0 , 3 3 3 3;  k 7 = 3 , 6 6 6 7;  k 9 = 8 , 3 3 3 3; 
k 1 = k 5 = k 8 = k 1 0 = k 1 1 = k 1 2 = 0 ;  x 1 4 = 1 ; 
x9=x10=x11=x12=x13=x15= x16=0.

Optimal values of the variables have been 
stored in F vector. The value of the objective 
function has been calculated by multiplying 
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this F vector with V matrix (coefficients of the 
objective function), and then adding back the 
constant components that have been previously 
rearranged from the left side in Eq. 13. Thus, 
value of the objective function was 1752.

Based on our results, maximum load level of 
the system has been reached with the above 
introduced costs of edges, while only one 
transport demand remained unfulfilled. 
Thus, one traveler doesn’t want to pay 

the defined cost of the route based on the 
function describing the willingness to pay. 
The missed travel has been loaded onto a 
fictive route (x14) between T and W zones. 

Based on the constructed optimal road toll 
structure, part-flows of the alternative routes 
have been distributed as illustrated in Fig 2. 
Calculation of part-flows has been based on 
the function of willingness to pay applying 
the optimal cost values of the edges.

Fig. 2.
Sankey Diagram of the Optimal Traffic Distribution 

As it can be seen in the Sankey diagram 
of the network, theoretically, the missed 
travel between T and W zones could have 
been loaded onto UT W1 as capacities of 
the corresponding edges have not been 
exhausted. However, considering that the 

variables were the costs of the edges, this 
could be only achieved by decreasing the cost 
of an edge of the corresponding alternative 
route, which would result in emerging 
demands between OD zones containing 
the edge with decreased cost. Therefore, 
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constra ining equal it ies of the model 
related to the transport demands would 
not be satisfied. In case of an autonomous 
transportation system this would mean that 
there are travelers whose transport demands 
have not been considered in case of the 
defined sample time period, but because of 
a current low costs of an alternative route 
they decide to start a journey, which would of 
course increase the load level of the system. 

However, these considerations can serve as 
a basis for developing services for travelers 
in case of a dynamically changing road toll 
structure (e.g. an application that notifies 
travelers who would like to travel somewhere 
but their travel is not urgent so they could 
wait for cheaper costs).

The above mentioned phenomenon can 
be handled by defining the pre-defined 
transport demands as upper bounds of the 
willingness to pay function, since part-flows 
of the routes were calculated in terms of 
the costs based on that function. Although, 
the function of willingness to pay has been 
described by a simple linear function in case 
of the presented research, to consider the 
whole problem in a linear programming 
approach.

3. Conclusion

The research process has been implemented 
in two phases. In the first step a simplified 
transport system has been modeled where 
traffic volumes has been applied as basic 
system variable. In the second step road 
toll has been involved in the system as 
the basic variable supplemented by traffic 
volumes loaded to fictive edges (defined as 
fictive part f low) as additional variables. 
Transport demands and characteristics of the 

infrastructure network have been considered 
as pre-defined static parameters, volume of 
traffic flows have been estimated depending 
on the road toll structure (considering the 
users’ willingness to pay, estimated by linear 
function). 

The aim of the considered traffic distribution 
problem was to define the minimum of 
total travel time depending on total traffic 
appeared on the network in a sample time 
period of the model. The investigated 
transportation system and its elements 
were assumed to be fully autonomous in 
order to assign trip distribution tasks and 
users’ decision processes under the control 
of the system, providing the necessary 
requirements to achieve system optimum.

In the presented article, linear framework 
of the problem has been elaborated based 
on linear programming approach. The 
method has been verified by applying it 
on a simplif ied example. Based on the 
results, optimal road toll structure has been 
constructed by the algorithm satisfying the 
most transport demands and distributing 
the traffic to minimize the load level of the 
transport system. Optimal solution has been 
illustrated by a Sankey diagram.

Authors’ future research will focus on 
the adjustments and dynamization of the 
function describing travelers’ willingness 
to pay to consider the current state of the 
network beside the cost of the routes and 
the extended implementation of the method 
on more complex transportation network. 
Furthermore, we aim to examine further 
application possibilities to evaluate routes 
of networks from the aspect of road safety 
and/or road toll structure by changing the 
model variables.
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