农田土壤抗生素抗性基因与微生物群落的关系

田其凡, 何玘霜, 陆安祥, 王海鸥. 农田土壤抗生素抗性基因与微生物群落的关系[J]. 环境化学, 2020, (5): 1346-1355. doi: 10.7524/j.issn.0254-6108.2019060602
引用本文: 田其凡, 何玘霜, 陆安祥, 王海鸥. 农田土壤抗生素抗性基因与微生物群落的关系[J]. 环境化学, 2020, (5): 1346-1355. doi: 10.7524/j.issn.0254-6108.2019060602
TIAN Qifan, HE Qishuang, LU Anxiang, WANG Haiou. Relationship between antibiotic resistance genes and microbial communities in farmland soil[J]. Environmental Chemistry, 2020, (5): 1346-1355. doi: 10.7524/j.issn.0254-6108.2019060602
Citation: TIAN Qifan, HE Qishuang, LU Anxiang, WANG Haiou. Relationship between antibiotic resistance genes and microbial communities in farmland soil[J]. Environmental Chemistry, 2020, (5): 1346-1355. doi: 10.7524/j.issn.0254-6108.2019060602

农田土壤抗生素抗性基因与微生物群落的关系

    通讯作者: 何玘霜, E-mail: heqs@brcast.org.cn
  • 基金项目:

    国家自然科学基金(41701542)资助.

Relationship between antibiotic resistance genes and microbial communities in farmland soil

    Corresponding author: HE Qishuang, heqs@brcast.org.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(41701542).
  • 摘要: 抗生素抗性基因(Antibiotic resistance genes,ARGs)作为一种新型环境污染物,近20年来在农田土壤中广泛富集,促进了耐药性的传播.土壤微生物群落在农业种植下也发生了极大的变化,由于ARGs的传播扩散与微生物息息相关,因此关于两者之间关系及相互作用的研究急速增加.本文通过综述近几年的国内外研究成果,概述了农田土壤ARGs的分布现状和优势微生物群落的变化情况,从农业种植模式、有机肥施用情况、施用有机肥的种类、土壤理化性质和土壤污染影响等角度总结ARGs富集与优势微生物群落、微生物多样性变化的关系,指出耐药菌的变化情况,基于当下研究的不足展望了继续深入探索的方向,为今后进一步深入探索两者间的科学规律提出了设想.
  • 加载中
  • [1] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006,65(5):725-759.
    [2] YING G G, HE L Y, YING A J, et al. China must reduce its antibiotic use[J]. Environmental Science & Technology, 2017,51(3):1072-1073.
    [3] LIANG Y T, PEI M, WANG D D, et al. Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes[J]. Environmental Science & Technology, 2017,51(9):4988-4998.
    [4] BLUM S A E, LORENZ M G, WACKERNAGEL W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils[J]. Systematic and Applied Microbiology, 1997,20(4):513-521.
    [5] HILL K E, TOP E M. Gene transfer in soil systems using microcosms[J]. FEMS Microbiology Ecology, 1997,25(4):319-329.
    [6] CRECCHIO C, RUGGIERO P, CURCI M. Binding of DNA from Bacillus subtilis on montmorillonitee-humic acids-Al or Fe hydroxypolymers:Effects on transformation and protection against Dnase[J]. Soil Science Society of America Journal, 2006,69(3):834-841.
    [7] 罗义, 周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物[J]. 环境科学学报, 2008,28(8):1499-1504.

    LUO Y, ZHOU Q X. Antibiotic resistance genes (ARGs)——A new type of environmental pollutant[J]. Journal of Environment Science, 2008,28(8):1499-1504(in Chinese).

    [8] 苏建强,黄福义,朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013,21(4):481-487.

    SU J Q, HUANG F Y, ZHU Y G. Advances in research on environmental antibiotic resistance genes[J]. Biodiversity Science, 2013,21(4):481-487(in Chinese).

    [9] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants:Studies in Northern Colorado[J]. Environmental Science & Technology, 2006,40(23):7445-7450.
    [10] QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018,110:160-172.
    [11] NõLVAK H, TRUU M, KANGER K, et al. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil[J]. Science of the Total Environment, 2016,562:678-689.
    [12] BONDARCZUK K, MARKOWICZ A, PIOTROWSKA-SEGET Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application[J]. Environment International, 2016,87:49-55.
    [13] XIE W Y, MCGRATH S P, SU J Q, et al. Long-term impact of field applications of sewage sludge on soil antibiotic resistome[J]. Environmental Science & Technology, 2016,50(23):12602-12611.
    [14] HEUER H, SCHMITT H, SMALLA K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 2011,14(3):236-243.
    [15] 毛书帅. 三种抗生素和铜单一及复合污染对土壤酶和微生物群落功能多样性的影响[D]. 泰安:山东农业大学,2016. MAO S S. Effects of single and combined pollution of three antibiotics and copper on functional diversity of soil enzymes and microbial communities[D]. Tai'an:Shandong Agricultural University, 2016(in Chinese).
    [16] 张宁, 李淼, 刘翔. 土壤中抗生素抗性基因的分布及抗药基因的研究进展[J]. 中国环境科学, 2018,38(7):2609-2617.

    ZHANG N, LI M, LIU X. Distribution and migration of antibiotic resistance genes in soil[J]. China Environmental Science, 2018,38(7):2609-2617(in Chinese).

    [17] 郭美婷, 袁青彬, 杨健. 环境中抗药细菌及其抗药基因的研究进展[J]. 环境科学与技术, 2012,35(11):87-92.

    GUO M T, YUAN Q B, YANG J. Advances in research on drug-resistant bacteria and their drug resistance genes in the environment[J]. Environmental Science & Technology, 2012, 35(11):87-92(in Chinese).

    [18] D'COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient[J]. Nature, 2011,477(7365):457-461.
    [19] FORSBERG K J, REYES A, WANG B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012,337(6098):1107-1111.
    [20] NONAKA L, ISSHIKI T, SUZUKI S. Distribution of the oxytetracycline resistance determinant Tet 34 among bacteria isolated from diseased fish[J]. Microbes and Environments, 2002,17(1):26-31.
    [21] D'COSTA V M, MCGRANN K M, HUGHES D W, et al. Sampling the antibiotic resistome[J]. Science, 2006,311(5759):374-377.
    [22] GILLINGS M R, GAZE W H, PRUDEN A, et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution[J]. The ISME Journal, 2014,9(6):1269-1279.
    [23] WVAN GOETHEM M, PIERNEEF R, BEZUIDT O K I, et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils[J]. Microbiome, 2018,6(1):1-12.
    [24] 喻娇, 冯乃宪, 喻乐意, 等. 土壤环境中典型抗生素残留及其与微生物互作效应研究进展[J]. 微生物学杂志, 2017,37(6):105-113.

    YU J, FENG N X, YU L Y, et al. Research progress on typical antibiotic residues in soil environment and their interaction with microorganisms[J]. Journal of Microbiology, 2017,37(6):105-113(in Chinese).

    [25] DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 2016,7:10541.
    [26] ZHAO X, WANG J H, ZHU L, et al. Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils[J]. Science of the Total Environment, 2019,654:906-913.
    [27] CHENG J H, TANG X Y, CUI J F. Effect of long-term manure slurry application on the occurrence of antibiotic resistance genes in arable purple soil (entisol)[J]. Science of the Total Environment, 2019,647:853-861.
    [28] LIU Z B, KLVMPER U, SHI L, et al. From pig breeding environment to subsequently produced pork:Comparative analysis of antibiotic resistance genes and bacterial community composition[J]. Frontiers in Microbiology, 2019,10:1-12.
    [29] 程建华, 唐翔宇, 刘琛. 紫色土丘陵区畜禽养殖场土壤中抗生素抗性基因分布特征[J]. 环境科学, 2019,40(7):3257-3262.

    CHENG J H, TANG X Y, LIU C. Distribution characteristics of antibiotic resistance genes in soil of livestock and poultry farms in purple soil hilly area[J]. Environmental Science, 2019,40(7):3257-3262(in Chinese).

    [30] ZHOU X, QIAO M, SU J Q, et al. High-throughput characterization of antibiotic resistome in soil amended with commercial organic fertilizers[J]. Journal of Soils and Sediments, 2018,19(2):641-651.
    [31] 张海丰, 史明明, 孙艳梅, 等. 磺胺甲恶唑污染土壤中微生物群落结构与抗生素抗性基因的分布特征[J]. 环境科学, 2019,40(10):4678-4684.

    ZHANG H F, SHI M M, SUN Y M, et al. Distribution characteristics of microbial community structure and antibiotic resistance genes in sulfamethoxazole-contaminated soil[J]. Environmental Science, 2019,40(10):4678-4684(in Chinese).

    [32] ZHANG J Y, SUI Q W, TONG J, et al. Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts[J]. Environment International, 2018,118:34-43.
    [33] 张毓森, 叶军, 苏建强. 粪肥与铜一次性施用对农田土壤抗生素抗性基因的长期影响[J]. 应用与环境生物学报, 2019,25(2):328-332.

    ZHANG Y S, YE J, SU J Q. Long-term effects of single application of manure and copper on soil antibiotic resistance genes in farmland[J]. Journal of Applied and Environmental Biology,2019,25(2):328-332(in Chinese).

    [34] ZHANG F L, ZHAO X X, LI Q B, et al. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil[J]. Environmental Science and Pollution Research, 2018,25(10):9547-9555.
    [35] HAN X M, HU H W, CHEN Q L, et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures[J]. Soil Biology and Biochemistry, 2018,126:91-102.
    [36] XIANG Q, CHEN Q L, ZHU D, et al. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities[J]. Environmental Pollution, 2018,235:525-533.
    [37] HU H W, WANG J T, LI J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J]. Environmental Science & Technology, 2016,51(2):790-800.
    [38] LIU P, JIA S Y, HE X W, et al. Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils[J]. Chemosphere, 2017,188:455-464.
    [39] ZHAO X, WANG J H, ZHU L S, et al. Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure[J]. Science of the Total Environment, 2017,593-594:10-17.
    [40] CHEN Q L, AN X L, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016,92-93:1-10.
    [41] 张兰河, 王佳佳, 哈雪娇, 等. 北京地区菜田土壤抗生素抗性基因的分布特征[J]. 环境科学, 2016,37(11):4395-4401.

    ZHANG L H, WANG J J, HA X J, et al. Distribution characteristics of antibiotic resistance genes in vegetable fields in Beijing[J]. Environmental Science, 2016,37(11):4395-4401(in Chinese).

    [42] PENG S, ZHOU B B, WANG Y M, et al. Bacteria play a more important role than nutrients in the accumulation of tetracycline resistance in manure-treated soil[J]. Biology and Fertility of Soils, 2016,52(5):655-663.
    [43] LIN H, SUN W C, ZHANG Z L, et al. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system[J]. Environmental Pollution, 2016,211:332-337.
    [44] 王佳佳, 张兰河, 高敏, 等. 北京地区农田土壤抗生素抗性基因分布状况的初步研究//中国环境科学学会(Chinese Society For Environmental Sciences).2015年中国环境科学学会学术年会论文集(第一卷)[C]. 中国环境科学学会,2015. WANG J J, ZHANG L H, GAO M, et al. Preliminary study on the distribution of antibiotic resistance genes in farmland soils in Beijing//Chinese Society for Environmental Sciences. Proceedings of the 2015 Annual Conference of the Chinese Society of Environmental Sciences (Volume Ⅰ)[C]. Chinese Society for Environmental Sciences, 2015(in Chinese).
    [45] 张俊, 杨晓洪, 葛峰, 等. 长期施用四环素残留猪粪对土壤中耐药菌及抗性基因形成的影响[J]. 环境科学, 2014,35(6):2374-2380.

    ZHANG J, YANG X H, GE F, et al. Effects of long-term application of tetracycline residual pig manure on the formation of resistant bacteria and resistance genes in soil[J]. Environmental Science, 2014, 35(6):2374-2380(in Chinese).

    [46] ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 2013,110(9):3435-3440.
    [47] WU B, QI Q, ZHANG X D, et al. Dissemination of Escherichia coli carrying plasmid-mediated quinolone resistance (PMQR) genes from swine farms to surroundings[J]. Science of the Total Environment, 2019,665:33-40.
    [48] WANG Q, LI X N, YANG Q X, et al. Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria[J]. Ecotoxicology and Environmental Safety, 2019,171:746-752.
    [49] LIU H, SUN H F, ZHANG M, et al. Dynamics of microbial community and tetracycline resistance genes in biological nutrient removal process[J]. Journal of Environmental Management, 2019,238:84-91.
    [50] AWASTHI M K, LIU T, CHEN H Y, et al. The behavior of antibiotic resistance genes and their associations with bacterial community during poultry manure composting[J]. Bioresource Technology, 2019,280:70-78.
    [51] 王佳佳. 北京地区蔬菜土壤抗生素抗性基因分布特征的研究[D]. 吉林:东北电力大学, 2016. WANG J J. Study on distribution characteristics of antibiotic resistance genes in vegetable soils in Beijing[D]. Jilin:Northeast Electric Power University, 2016(in Chinese)
    [52] WANG F, XU M, STEDTFELD R D, et al. Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome[J]. Environmental Science & Technology, 2018,52(22):13037-13046.
    [53] CHEN Z Q, WANG Y, WEN Q X. Effects of chlortetracycline on the fate of multi-antibiotic resistance genes and the microbial community during swine manure composting[J]. Environmental Pollution, 2018,237:977-987.
    [54] JIANG X, ELLABAAN M M H, CHARUSANTI P, et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens[J]. Nature Communications, 2017,8:15784.
    [55] CHEN Z Y, ZHANG W, YANG L X, et al. Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures[J]. Environmental Pollution, 2019,248:947-957.
    [56] DUNIVIN T K, SHADE A. Community structure explains antibiotic resistance gene dynamics over a temperature gradient in soil[J]. FEMS Microbiology Ecology, 2018,94(3):1-9.
    [57] CADENA M, DURSO L M, MILLER D N, et al. Tetracycline and sulfonamide antibiotic resistance genes in soils from nebraska organic farming operations[J]. Frontiers in Microbiology, 2018,9:1-10.
    [58] WANG F, STEDTFELD R D, KIM O-S, et al. Influence of soil characteristics and proximity to antarctic research stations on abundance of antibiotic resistance genes in soils[J]. Environmental Science & Technology, 2016,50(23):12621-12629.
    [59] FORSBERG K J, PATEL S, GIBSON M K, et al. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 2014,509(7502):612-616.
    [60] ZHAO Y, COCERVA T, COX S, et al. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils[J]. Science of the Total Environment, 2019,656:512-520.
    [61] LIN H, CHAPMAN S J, FREITAG T E, et al. Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers[J]. Ecotoxicology and Environmental Safety, 2019,170:39-46.
    [62] W. KNAPP C, M. MCCLUSKEY S N N, K. SINGH B, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived scottish soils[J]. Plos One, 2011.
    [63] URRA J, ALKORTA I, LANZéN A, et al. The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance[J]. Applied Soil Ecology, 2019,135:73-84.
    [64] URRA J, ALKORTA I, MIJANGOS I, et al. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities[J]. Science of the Total Environment, 2019,647:1410-1420.
    [65] BLAU K, CASADEVALL L, WOLTERS B, et al. Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome[J]. FEMS Microbiology Ecology, 2017,94(2):1-11.
    [66] DAVIES J, DAVIES D. Origins and evolution of antibiotic resistance[J]. Microbiology and Molecular Biology Reviews, 2010,74:417-433.
    [67] 朱永官,欧阳纬莹,吴楠等. 抗生素耐药性的来源与控制[J]. 中国科学院院刊, 2015,30(4):509-516.

    ZHU Y G, OUYANG W Y, WU N, et al. Sources of antibiotic resistance and control strategies[J]. Bulletin of Chinese Academy of Sciences, 2015,30(4):509-516(in Chinese).

    [68] CHEN B W, YUAN K, CHEN X, et al. Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the tibetan environment[J]. Environmental Science & Technology, 2016,50(13):6670-6679.
    [69] JOY S R, BARTELT-HUNT S L, SNOW D D, et al. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry[J]. Environmental Science & Technology, 2013,47(21):12081-12088.
    [70] WU N, QIAO M, ZHANG B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology, 2010,44(18):6933-6939.
    [71] BENGTSSON-PALME J, KRISTIANSSON E, JOAKIM L. Environmental factors influencing the development and spread of antibiotic resistance[J]. FEMS Microbiology Reviews, 2017, 42:68-80.
    [72] FANG H, HUANG K L, YU J N, et al. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment[J]. Chemosphere, 2019,224:202-211.
    [73] PENG S, LI H J, SONG D, et al. Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting[J]. Bioresource Technology, 2018,263:393-401.
    [74] MARTINE J L. Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens[J]. Frontiers in Microbiology, 2011,2:1-6.
    [75] DUTTA C, PAN A. Horizontal gene transfer and bacterial diversity[J]. Journal of Biosciences, 2002, 27:27-33.
    [76]
    [77] HUERTA B, MARTI E, GROS M, et al. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs[J]. Science of the Total Environment, 2013,456-457:161-170.
    [78] ALONSO A, SAÂNCHEZ P, MARTõÂNEZ J L. Environmental selection of antibiotic resistance genes[J]. Environmental Microbiology, 2001,3(1):1-9.
    [79] TORSVIK V, ΦVREAS L. Microbial diversity and function in soil:From genes to ecosystems[J]. Current Opinion in Microbiology, 2002,5(3):240-245.
    [80] AMANN R I, LUDWIG W, SCHLEIFER K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews, 1995,59(1):143-169.
    [81] 王丽梅, 罗义, 毛大庆, 等. 抗生素抗性基因在环境中的传播扩散及抗性研究方法[J]. 应用生态学报. 2010,21(4):1063-1069.

    WANG L M, LUO Y, MAO D Q, et al. Study on the spread of antibiotic resistance genes in the environment and resistance research methods[J]. Chinese Journal of Applied Ecology,2010,21(4):1063-1069(in Chinese).

    [82] 朱阵, 李冰, 周绪正, 等. 环境中细菌抗药性的研究进展[J]. 中国畜牧兽医. 2016,43(12):3368-3374.

    ZHU Z, LI B, ZHOU X Z, et al. Research progress in bacterial resistance in the environment[J]. Chinese Animal Husbandry and Veterinary Medicine, 2016,43(12):3368-3374(in Chinese).

    [83] RIESENFELD C S, GOODMAN R M, HANDELSMAN J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes[J]. Environmental Microbiology, 2004,6(9):981-989.
    [84] SCHMIEDER R, EDWARDS R. Insights into antibiotic resistance through metagenomic approaches[J]. Future Microbiology, 2012,7(1):73-89.
    [85] MONIER J M, DEMANÈCHE S, DELMONT T O, et al. Metagenomic exploration of antibiotic resistance in soil[J]. Current Opinion in Microbiology, 2011,14(3):229-235.
    [86] WICHMANN F, UDIKOVIC-KOLIC N, ANDREW S, et al. Diverse antibiotic resistance genes in dairy cow manure[J]. mBio, 2014,5:e01017-13.
    [87] 张宇亭. 长期施肥对土壤微生物多样性和抗生素抗性基因累积的影响[D]. 重庆:西南大学, 2017. ZHANG Y T. Effects of long-term fertilization on soil microbial diversity and accumulation of antibiotic resistance genes[D]. Chongqing:Southwest University, 2017(in Chinese).
    [88] AWAD Y M, RAE K K, SUNG-CHUL K, et al. Monitoring antibiotic residues and corresponding antibiotic resistance genes in an agroecosystem[J]. Journal of Chemistry, 2015, 2015:1-7.
    [89] SONG J X, RENSING C, HOLM P E, et al. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil[J]. Environmental Science & Technology, 2017,51(5):3040-3047.
    [90] BAKER-AUSTIN C, WRIGHT M S, STEPANAUSKAS R, et al. Coselection of antibiotic and metal resistance[J]. Trends Microbiol, 2006,14:176-182.
    [91] SEILER C, BERENDONK T U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Frontiers in Microbiology, 2012,3:1-10.
    [92] WRIGHT M S, PELTIER G L, STEPANAUSKAS R, et al. Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams[J]. FEMS Microbiology Ecology, 2006,58:293-302.
    [93] CHAPMAN J S. Disinfectant resistance mechanisms, cross-resistance and coresistance[J]. International Biodeterioration and Biodegradation, 2003,51:271-276.
    [94] YIN Y N, GU J, WANG X J, et al. Effects of copper addition on copper resistance, antibiotic resistance genes, and intl1 during swine manure composting[J]. Frontiers in Microbiology, 2017,8:1-10.
  • 加载中
计量
  • 文章访问数:  3284
  • HTML全文浏览数:  3284
  • PDF下载数:  148
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-06

农田土壤抗生素抗性基因与微生物群落的关系

    通讯作者: 何玘霜, E-mail: heqs@brcast.org.cn
  • 1. 北京科技大学化学与生物工程学院, 北京, 100083;
  • 2. 北京市农林科学院, 北京农业质量标准与检测技术研究中心, 北京, 100097;
  • 3. 农产品产地环境监测北京市重点实验室, 北京, 100097
基金项目:

国家自然科学基金(41701542)资助.

摘要: 抗生素抗性基因(Antibiotic resistance genes,ARGs)作为一种新型环境污染物,近20年来在农田土壤中广泛富集,促进了耐药性的传播.土壤微生物群落在农业种植下也发生了极大的变化,由于ARGs的传播扩散与微生物息息相关,因此关于两者之间关系及相互作用的研究急速增加.本文通过综述近几年的国内外研究成果,概述了农田土壤ARGs的分布现状和优势微生物群落的变化情况,从农业种植模式、有机肥施用情况、施用有机肥的种类、土壤理化性质和土壤污染影响等角度总结ARGs富集与优势微生物群落、微生物多样性变化的关系,指出耐药菌的变化情况,基于当下研究的不足展望了继续深入探索的方向,为今后进一步深入探索两者间的科学规律提出了设想.

English Abstract

参考文献 (94)

目录

/

返回文章
返回