南京化工园区道路尘中邻苯二甲酸酯的时空变化和风险评估

甄晓龙, 刘刚, 李久海, 徐慧, 吴丹. 南京化工园区道路尘中邻苯二甲酸酯的时空变化和风险评估[J]. 环境化学, 2020, (2): 531-541. doi: 10.7524/j.issn.0254-6108.2019032502
引用本文: 甄晓龙, 刘刚, 李久海, 徐慧, 吴丹. 南京化工园区道路尘中邻苯二甲酸酯的时空变化和风险评估[J]. 环境化学, 2020, (2): 531-541. doi: 10.7524/j.issn.0254-6108.2019032502
ZHEN Xiaolong, LIU Gang, LI Jiuhai, XU Hui, WU Dan. Spatial-temporal variation and risk assessment of phthalic acid esters in road dust of Nanjing chemical industry park[J]. Environmental Chemistry, 2020, (2): 531-541. doi: 10.7524/j.issn.0254-6108.2019032502
Citation: ZHEN Xiaolong, LIU Gang, LI Jiuhai, XU Hui, WU Dan. Spatial-temporal variation and risk assessment of phthalic acid esters in road dust of Nanjing chemical industry park[J]. Environmental Chemistry, 2020, (2): 531-541. doi: 10.7524/j.issn.0254-6108.2019032502

南京化工园区道路尘中邻苯二甲酸酯的时空变化和风险评估

    通讯作者: 刘刚, E-mail: liugang650104@sina.com
  • 基金项目:

    国家自然科学基金(41073019)资助.

Spatial-temporal variation and risk assessment of phthalic acid esters in road dust of Nanjing chemical industry park

    Corresponding author: LIU Gang, liugang650104@sina.com
  • Fund Project: Supported by the National Natural Science Foundation of China(41073019).
  • 摘要: 在秋季和冬季节分别在南京化工园区主、次干道采集道路尘,采集的道路尘经200目筛子过筛后经分离装置采集道路尘中PM2.5,用二氯甲烷和甲醇(2∶1,V/V)提取有机物,,用气质联用仪(GC-MS)测定了6种邻苯二甲酸酯(phthalate esters,PAEs)类化合物,分析了PAEs化学组成的时空变化,确定了PAEs的潜在来源和评估了PAEs的健康风险.结果表明:秋季和冬季道路尘中PAEs含量分别为106.47±67.54 μg·g-1和51.19±30.88 μg·g-1.秋季,PAEs污染物主要以邻苯二甲酸(2-乙基己基)酯(di (2-ethylhexyl) phthalate,DEHP)和邻苯二甲酸二异丁酯(di-isobutyl phthalate,DiBP)为主;而冬季,PAEs污染物主要以DEHP和邻苯二甲酸二丁酯(di-n-butyl phthalate,DnBP)为主.秋季,邻苯二甲酸二甲酯(dimethyl phthalate,DMP)含量最少;而冬季,邻苯二甲酸二乙酯(diethyl phthalate,DEP)含量最少.通过进一步分析发现,秋季和冬季PAEs的来源有所不同,秋季来源于人类日常生活的占比高于冬季,而冬季来源于增塑剂的占比高于秋季.这种差异主要集中在高分子量PAEs.秋季,次干道和主干道道路尘中PAEs含量分别为120.69±79.21 μg·g-1和97.58±71.99 μg·g-1;而冬季,次干道和主干道道路尘中PAEs含量分别为60.02±46.88 μg·g-1和45.67±24.11 μg·g-1.主、次干道中PAEs的浓度差异是由PAEs的物理化学性质和降解、采样点位置、道路特点和排放源等多种因素协同影响.主成分分析(principal component analysis PCA)结果表明,PAEs污染物主要来源于塑料产品中的增塑剂和人类日常生活.使用美国环境保护署(US.EPA 1989,1996,2001)建立的评估体系评价儿童和成人的非致癌和致癌风险.儿童和成人的非致癌总风险(HI)均低于安全阈值1.0,说明化工园区道路尘中PAEs非致癌风险较小.人体暴露于化工园区道路尘中DEHP致癌风险分别为9.16×10-7、1.15×10-6、4.26×10-7和5.78×10-7(秋季主干道、秋季次干道、冬季主干道和冬季次干道),除秋季次干道道路尘PM2.5中DEHP的致癌风险大于1×10-6,其他均小于1×10-6,表明该地区的致癌风险处于可接受范围,但仍不能忽视DEHP致癌风险的长期效应.
  • 加载中
  • [1] LIU E, YAN T, BIRCH G, et al. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China[J]. Science of the Total Environment, 2014, 476-477:522-531.
    [2] 李钢, 樊守彬,钟连红,等. 北京交通扬尘污染控制研究[J]. 城市管理与科技, 2004, 6(4):151-152

    ,158. LI G, FAN S B, ZHONG L H, et al. The Study of road dust controlling in Beijing City[J]. Urban Management and Technology, 2004, 6(4):151-152,158(in Chinese).

    [3] 张猛. 城市道路扬尘排放特性及控制技术研究[D].济南:山东建筑大学, 2011. ZHANG M. Research on emission characteristic and control technology of urban road dust[D].Jinan:School of Municipal and Environmental Engineering, 2001(in Chinese).
    [4] MORENO, KARANASIOU, AMATO, et al. Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions[J]. Atmospheric Environment, 2013, 68:33-44.
    [5] BRUNEKREEF B, FORSBERG B. Epidemiological evidence of effects of coarse airborne particles on health[J]. European Respiratory Journal, 2005, 26(2):309-318.
    [6] POPE C A, DOCKERY D W. Health effects of fine particulate air pollution:Lines that connect[J]. Journal of the Air & Waste Management Association, 2006, 56(6):709-742.
    [7] 翟立群, 郑祥民, 周立旻, 等. 上海市交通主干道沿线大气颗粒物及其重金属含量分布特征[J]. 城市环境与城市生态, 2010,23(1):10-13.

    ZHAI L G, ZHENG X M, ZHOU L M, et al. Distribution characteristics about atmospheric particulate and content of heavy metal along traffic mainliner in Shanghai[J]. Urban Environment & Urban Ecology, 2010, 23(1):10-13(in Chinese).

    [8] AMATO F, ALASTUEY A, DE LA ROSA J, et al. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain[J]. Atmospheric Chemistry and Physics, 2014, 14(7):3533-3544.
    [9] DIONISIO K L, ROONE M S, ARKU R E, et al. Within-neighbourhood patterns and sources of particle pollution:mobile monitoring and Geographic Information System analysis in four communities in Accra, Ghana[J]. Environmental Health Perspectives, 2010, 118(5):607-613.
    [10] PIRJOLA L, JOHANSSON C, KUPIAINEN K, et al. Road dust emissions from paved roads measured using different mobile systems[J]. Journal of the Air & Waste Management Association, 2010, 60(12):1422-1433.
    [11] ZHU D, KUHNS H D, BROWN S, et al. Fugitive dust emissions from paved road travel in the Lake Tahoe Basin[J]. Journal of the Air & Waste Management Association, 2009, 59(10):1219-1229.
    [12] KONG S, JI Y, LIU L, et al. Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin, China[J]. Atmospheric Environment, 2013, 74:199-208.
    [13] CAI Q Y, MO C H, WU Q T, et al. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application[J]. Bioresource Technology, 2008, 99(6):1830-1836.
    [14] XU G, LI F, WANG Q. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China[J]. Science of the Total Environment, 2008, 393(2):333-340.
    [15] WANG P, WANG S L, FAN C Q. Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China[J]. Chemosphere, 2008, 72(10):1567-1572.
    [16] WANG W-L, QIAN-YUANWU, CHAOWANG, et al. Health risk assessment of phthalate esters (PAEs) in drinking water sources of China[J]. Environmental Science and Pollution Research, 2015, 22:3620-3630.
    [17] HE M J, LU J F, MA J Y, et al. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China:Concentrations, composition profiles and sources in comparison to street dust[J]. Environmental Pollution, 2018, 237:143-153.
    [18] WANG L, ZHANG W, TAO W, et al. Investigating into composition, distribution, sources and health risk of phthalic acid esters in street dust of Xi'an City, Northwest China[J]. Environmental Geochemistry and Health, 2017, 39(4):865-877.
    [19] ZHENG X, YANG Y, LIU M, et al. PAH determination based on a rapid and novel gas purge-microsyringe extraction (GP-MSE) technique in road dust of Shanghai, China:Characterization, source apportionment, and health risk assessment[J]. Science of the Total Environment, 2016, 557-558:688-696.
    [20] SUN J, PAN L, ZHAN Y, et al. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China[J]. Science of the Total Environment, 2016, 544:670-676.
    [21] BORNEHAG C G, LUNDGREN B, WESCHLER C J, et al. Phthalates in indoor dust and their association with building characteristics[J]. Environmental Health Perspective, 2005, 13:1399-1404.
    [22] ZHAO J, JI Y, ZHU Z, et al. PAEs occurrence and sources in road dust and soil in/around parks in May in Tianjin, China[J]. Ecotoxicology and Environmental Safety, 2018, 147:238-244.
    [23] MANZ M, WENZEL K D, DIETZE U, et al. Persistent organic pollutants in agricultural soils of central Germany[J]. Science of the Total Environment, 2001, 277(1):187-198.
    [24] CALLéN M S, DE LA CRUZ M T, LóPEZ J M, et al. Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain)[J]. Chemosphere, 2009, 76(8):1120-1129.
    [25] FANG G C, CHANG C N, WU Y S, et al. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung[J]. Science of the Total Environment, 2004, 327(1):135-146.
    [26] U.S. EPA. Supplemental guidance for developing soil screening levels for superfund sites. OSWER; 2001[9355.4-24].
    [27] FERREIRA-BAPTISTA L, DE MIGUEL E. Geochemistry and risk assessment of street dust in Luanda, Angola:A tropical urban environment[J]. Atmospheric Environment, 2005, 39(25):4501-4512.
    [28] 李如忠, 周爱佳, 童芳, 等. 合肥市城区地表灰尘重金属分布特征及环境健康风险评价[J]. 环境科学, 2011, 32(9):2661-2668.

    LI R Z, ZHOU A J,TONG F, et al. Distribution of metals in urban dusts of hefei and health risk assessment[J]. Environmental Science, 2011, 32(9):2661-2668(in Chinese).

    [29] 王宗爽, 段小丽, 刘平, 等. 环境健康风险评价中我国居民暴露参数探讨[J]. 环境科学研究, 2009, 22(10):1164-1170.

    WANG Z S, DUAN X L, LIU P, et al. Human exposure factors of Chinese people in environmental health risk assessment[J]. Research of Environmental Sciences, 2009, 22(10):1164-1170(in Chinese).

    [30] 王宗爽, 武婷, 段小丽, 等. 环境健康风险评价中我国居民呼吸速率暴露参数研究[J]. 环境科学研究, 2009, 22(10):1171-1175.

    WANG Z S, WU T, DUAN X L, et al. Research on inhalation rate exposure factors of Chinese residents in environmental health risk assessment[J]. Research of Environmental Sciences, 2009, 22(10):1171-1175(in Chinese).

    [31] 王喆, 刘少卿, 陈晓民, 等. 健康风险评价中中国人皮肤暴露面积的估算[J]. 安全与环境学报, 2008, 8(4):152-156.

    WANG Z, LIU S Q, CHEN X M, et al. Estimates of the exposed dermal surface area of Chinese in view of human health risk[J]. Journal of Safety and Environment, 2008, 8(4):152-156(in Chinese).

    [32] JI Y, WANG F, ZHANG L, et al. A comprehensive assessment of human exposure to phthalates from environmental media and food in Tianjin, China[J]. Journal of Hazardous Materials, 2014, 279:133-140.
    [33] STAPLES C A, PETERSON D R, PARKERTON T F, et al. The environmental fate of phthalate esters:A literature review[J]. Chemosphere, 1997, 35(4):667-749.
    [34] LIU X, SHI J, BO T, et al. Occurrence of phthalic acid esters in source waters:a nationwide survey in China during the period of 2009-2012[J]. Environmental Pollution, 2014, 184:262-270.
    [35] ZENG F, CUI K, XIE Z, et al. Phthalate esters (PAEs):Emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China[J]. Environmental Pollution, 2008, 156(2):425-434.
    [36] ZHANG L, WANG F, JI Y, et al. Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China[J]. Atmospheric Environment, 2014, 85:139-146.
    [37] 陈丽旋, 曾锋, 罗丹玲, 等. 城市道路灰尘中邻苯二甲酸酯污染特征研究[J]. 环境科学学报, 2005, 25(3):409-413.

    CHEN L X, ZENG F, LUO D L, et al. Study of the distribution characteristics of phthalate esters in road dust of the city[J]. Acta Scientiae Circumstantiate, 2005, 25(3):409-413(in Chinese).

    [38] LEE S T, LIN C, VU C T, et al. How human activities in commercial areas contribute to phthalate ester pollution in street dust of Taiwan[J]. Science of the Total Environment, 2019, 647:619-626.
    [39] SKRBIC B D, JI Y, DURISIC-MLADENOVIC N, et al. Occurence of the phthalate esters in soil and street dust samples from the Novi Sad city area, Serbia, and the influence on the children's and adults' exposure[J]. J Hazard Mater, 2016, 312:272-279.
    [40] ZHANG Q, LU X M, ZHANG X L, et al. Levels of phthalate esters in settled house dust from urban dwellings with young children in Nanjing, China[J]. Atmospheric Environment, 2013, 69:258-264.
    [41] PEIJNENBURG W J G M, STRUIJS J. Occurrence of phthalate esters in the environment of the Netherlands[J]. Ecotoxicology and Environmental Safety, 2006, 63(2):204-215.
    [42] ABDEL DAIEM M M, RIVERA-UTRILLA J, OCAMPO-PéREZ R, et al. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies-A review[J]. Journal of Environmental Management, 2012, 109:164-178.
    [43] GóMEZ-HENS A, AGUILAR-CABALLOS M P. Social and economic interest in the control of phthalic acid esters[J]. TrAC Trends in Analytical Chemistry, 2003, 22(11):847-857.
    [44] CAI Q Y, MO C H, WU Q T, et al. Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China[J]. Chemosphere, 2007, 68(9):1751-1762.
    [45] LIU H, LIANG Y, ZHANG D, et al. Impact of MSW landfill on the environmental contamination of phthalate esters[J]. Waste Management, 2010, 30(8):1569-1576.
    [46] ZENG F, CUI K, XIE Z, et al. Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China[J]. Journal of Hazardous Materials, 2009, 164(2-3):1171-1178.
    [47] CHEN S C, YOU S Z, CHANG I Y. Probabilistic risk assessment of consumer exposure to particle-bound PAHs at a taiwanese night market[J]. International Journal of Environmental Research, 2014, 8(3):643-652.
    [48] YING G, LEI W, KANNAN K. Phthalates and parabens in personal care products from China:Concentrations and human exposure[J]. Archives of Environmental Contamination & Toxicology, 2014, 66(1):113-119.
  • 加载中
计量
  • 文章访问数:  736
  • HTML全文浏览数:  736
  • PDF下载数:  33
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-25

南京化工园区道路尘中邻苯二甲酸酯的时空变化和风险评估

    通讯作者: 刘刚, E-mail: liugang650104@sina.com
  • 1. 大气环境与设备技术协同创新中心, 南京, 210044;
  • 2. 江苏省大气环境监测与污染控制重点实验室, 南京, 210044;
  • 3. 南京信息工程大学环境科学与工程学院, 南京, 210044
基金项目:

国家自然科学基金(41073019)资助.

摘要: 在秋季和冬季节分别在南京化工园区主、次干道采集道路尘,采集的道路尘经200目筛子过筛后经分离装置采集道路尘中PM2.5,用二氯甲烷和甲醇(2∶1,V/V)提取有机物,,用气质联用仪(GC-MS)测定了6种邻苯二甲酸酯(phthalate esters,PAEs)类化合物,分析了PAEs化学组成的时空变化,确定了PAEs的潜在来源和评估了PAEs的健康风险.结果表明:秋季和冬季道路尘中PAEs含量分别为106.47±67.54 μg·g-1和51.19±30.88 μg·g-1.秋季,PAEs污染物主要以邻苯二甲酸(2-乙基己基)酯(di (2-ethylhexyl) phthalate,DEHP)和邻苯二甲酸二异丁酯(di-isobutyl phthalate,DiBP)为主;而冬季,PAEs污染物主要以DEHP和邻苯二甲酸二丁酯(di-n-butyl phthalate,DnBP)为主.秋季,邻苯二甲酸二甲酯(dimethyl phthalate,DMP)含量最少;而冬季,邻苯二甲酸二乙酯(diethyl phthalate,DEP)含量最少.通过进一步分析发现,秋季和冬季PAEs的来源有所不同,秋季来源于人类日常生活的占比高于冬季,而冬季来源于增塑剂的占比高于秋季.这种差异主要集中在高分子量PAEs.秋季,次干道和主干道道路尘中PAEs含量分别为120.69±79.21 μg·g-1和97.58±71.99 μg·g-1;而冬季,次干道和主干道道路尘中PAEs含量分别为60.02±46.88 μg·g-1和45.67±24.11 μg·g-1.主、次干道中PAEs的浓度差异是由PAEs的物理化学性质和降解、采样点位置、道路特点和排放源等多种因素协同影响.主成分分析(principal component analysis PCA)结果表明,PAEs污染物主要来源于塑料产品中的增塑剂和人类日常生活.使用美国环境保护署(US.EPA 1989,1996,2001)建立的评估体系评价儿童和成人的非致癌和致癌风险.儿童和成人的非致癌总风险(HI)均低于安全阈值1.0,说明化工园区道路尘中PAEs非致癌风险较小.人体暴露于化工园区道路尘中DEHP致癌风险分别为9.16×10-7、1.15×10-6、4.26×10-7和5.78×10-7(秋季主干道、秋季次干道、冬季主干道和冬季次干道),除秋季次干道道路尘PM2.5中DEHP的致癌风险大于1×10-6,其他均小于1×10-6,表明该地区的致癌风险处于可接受范围,但仍不能忽视DEHP致癌风险的长期效应.

English Abstract

参考文献 (48)

目录

/

返回文章
返回