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ABSTRACT: The problem of propagation of plane wave including body and surface 
waves propagating in a transversely isotropic half-space with a depth-wise axis of material 
symmetry is investigated in details. Using the advantage of representation of displacement 
fields in terms of two complete scalar potential functions, the coupled equations of motion 
are uncoupled and reduced to two independent equations for potential functions. In this 
paper, the secular equations for determination of body and surface wave velocities are 
derived in terms of both elasticity coefficients and the direction of propagation. In 
particular, the longitudinal, transverse and Rayleigh wave velocities are determined in 
explicit forms. It is also shown that in transversely isotropic materials, a Rayleigh wave 
may propagate in different manner from that of isotropic materials. Some numerical results 
for synthetic transversely isotropic materials are also illustrated to show the behavior of 
wave motion due to anisotropic nature of the problem. 
 
Keywords: P-Wave; Rayleigh Wave; Scalar Potential Function; SH-Wave; SV-Wave; 
Transverse Isotropy. 

 
 
INTRODUCTION 
 
The study of elastic wave propagation has its 
origin in the age-old research. Cauchy in 
1822 discovered most of the elements of the 
pure theory of elasticity, including the notion 
of stress and the displacement equations of 
motion. Poisson was the first, who 
recognized that an elastic disturbance is in 
general composed of both types of 
fundamental displacement waves, the 
dilatational (longitudinal) and the 
equivoluminal (transverse) waves (see 
Miklowitz, 1978).  

Cauchy in 1830 and Green in 1839, 
investigated the propagation of plane waves 
through a crystalline medium and obtained 
equations for the velocity of propagation in 
terms of the direction of the normal to the 
wave front. In the case of isotropic medium, 
in addition to a dilatational wave, also called 
as P - wave, two other waves correspond to 
transverse plane waves known as SV - and 
SH -waves (vertically and horizontally 
polarized shear waves) found to be existed 
(see Miklowitz, 1978). 

Lord Rayleigh in 1887, made the very 
important finding of his well-known surface 
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wave. This wave is generated by a pair of 
plane harmonic waves, dilatational and 
equivoluminal waves (P- and SV-waves), 
propagating over the free surface of an 
elastic half-space. In an isotropic half-space, 
it travels parallel to the surface with a wave 
speed that is slightly less than that of the 
equivoluminal body wave (see Miklowitz, 
1978).  

Recently, the wave propagation in 
anisotropic materials is of major concern 
because of their high performance in 
technological applications (see Raoofian 
Naeeni and Eskandari-Ghadi, 2016; 
Ardeshire-Behrestaghi et al., 2013; 
Eskandari-Ghadi et al., 2014). Most 
innovative materials such as composites, 
piezo-composites, and magnetics are 
anisotropic, and in application need to be 
modeled as either transversely isotropic or 
orthotropic materials. The early work of 
Stoneley (1949) revealed that wave 
propagation in a transversely isotropic 
medium gives rise to phenomena, which 
greatly differ from that of isotropic one. 
Later, some researches focused on the study 
of the elastodynamic problems pertinent to 
the transversely isotropic half-space under 
surface or buried loadings (see Eskandari-
Ghadi and Sattar, 2009; Eskandari-Ghadi et 
al., 2011; Eskandari-Ghadi and Ardeshir-
Behrestaghi, 2010; Raoofian Naeeni and 
Eskandari-Ghadi, 2016).  

The potential method is a powerful tool 
for solving the coupled both equilibrium 
equations and equations of motion (see 
Eskandari-Ghadi and Ardeshir-Behrestaghi, 
2011; Raoofian Naeeni et al., 2015a). Lame 
in 1852, showed that every sufficiently 
smooth solution for the displacement 
equations of motion in isotropic materials 
can be represented by the sum of two 
components for the displacement, the first is 
represented as the gradient of a scalar 
potential function, which is curl-free and the 
second is shown as a solenoidal vector field, 

which is divergence-free, where both satisfy 
wave equations having the dilatational and 
equivoluminal wave speeds, respectively 
(see Miklowitz, 1978). A rigorous 
completeness proof of this solution was 
given by Sternberg and Gurtin (1962). On 
the other hand, Lekhnitskii in 1940, 
considered elastostatics problems of 
transversely isotropic material characterized 
by torsionless axisymmetry and found the 
solution of the displacement equations of 
equilibrium in terms of a single stress 
function satisfying a fourth-order partial 
differential equation (see Lekhnitskii, 1981). 
Hu (1953) studied the general case of 
elastostatic problem in transversely isotropic 
media and generalized Lekhnitskii’s 
solution, now a day called Lekhnitskii–Hu–
Nowacki solution. Eskandari-Ghadi (2005) 
introduced a complete solution for the 
general elastodynamics boundary value 
problems in a linear Green elasticity 
transversely isotropic mono-axial-convex 
domain in terms of two scalar potential 
functions, one of which describes SH-wave 
and the other gives both SV- and P-waves in 
any plane containing the axis of material 
symmetry (see Amiri-Hazaveh et al., 2013). 
His solution is reduced to only one potential 
function for torsionless axisymmetric 
problems. 

Three different body waves can propagate 
in each direction in anisotropic elastic 
materials; however, while the associated 
displacement vectors are mutually 
perpendicular, the waves cannot in general 
be classified into dilatational and rotational 
types. For transversely isotropic materials 
one of the body waves is always purely 
transverse, and since this wave is polarized 
in planes perpendicular to the direction of 
symmetry, it may appropriately be referred 
to as an SH-wave. The other two body waves 
are called quasi-longitudinal (QL) and quasi-
transverse (QT), the former being the wave 
for which the inclination of the displacement 
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vector to the wave normal is least (see 
Raoofian Naeeni et al., 2015b; Slawinski, 
2010). 

In this study, for the first time, with the 
aid of a general and complete solution 
presented by Eskandari-Ghadi (2005), the 
propagation of harmonic waves in 
transversely isotropic media is investigated, 
particularly the explicit equations for the 
body-wave is presented from which the 
velocities of longitudinal and transverse 
waves are deduced. It is shown that the 
velocities of these waves are dependent on 
both compressive/tensile and shear moduli 
of the material. It is shown that the 
longitudinal wave velocity in some special 
direction is independent from shear moduli, 
and in the same way, the transverse wave 
velocity in some direction is independent 
from the compressive/tensile moduli. The 
Rayleigh-wave velocity is studied in detail, 
where two kinds of Rayleigh-waves are 
discovered and the conditions for the 
existence of any kind of Rayleigh-wave are 
addressed. 
 
GOVERNING EQUATIONS AND 
POTENTIAL FUNCTION 
 

The displacement equations of motion for 
a linear transversely isotropic Green elastic 
material in Cartesian coordinate system 
(

1 2 3
: , ,o x x x ) and in the absence of body 

forces are expressed as (see Eskandari-
Ghadi, 2005). 
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where 
11

C , 
13

C ,
33

C , 
12

C , 
44

C  and 

 66 11 12
2C C C   are elasticity coefficients, 

1
u , 2

u  and 3
u  are components of 

displacement vector and   is the density of 
the medium. The summation convention is 
applied over repeated indices. Due to 
positive definiteness of strain energy 
function, the following inequalities must be 
hold: 
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The general solution of Eq. (1) in an 3

x -
convex medium may be expressed in terms 
of two scalar potential functions F  and   
as (see Eskandari-Ghadi, 2005). 
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By replacing Eq. (3) into Eq. (1), the 
following partial differential equations for 
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F  an   may be derived (see Eskandari-
Ghadi, 2005). 
 

4
2 2 2

1 2 02 2
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0, 0F
x t
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Moreover 2

1
s  and 2

2
s  are the roots of the 

following polynomial equation and they are 
not zero or negative. 
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2
1

s  and 2
2

s  can be real and distinct, 
coalescent, or conjugate complex. It is easy 
to show, that if the roots are real, then they 
are positive (see Eskandari-Ghadi, 2005). 
 
BODY WAVES 
 
In this section, we give a brief account of the 
behavior of plane harmonic body waves 
propagating in an infinite media and 
governed by Eq. (5). To do so, we attach a 
Cartesian coordinate system 

1 2 3
( : , , )o x x x  

and for more understanding a cylindrical 

coordinate system ( : , , )o r z  as shown in 

Figure 1 at an arbitrary point of the domain 
in such a way that the 3

x  axis is positive 
downward and is parallel to the axis of 
material symmetry at any point. We seek the 
solution of Eq. (5) in the form of plane wave 
as: 
 

( )

( )
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where   is the circular frequency of the 
wave, S its slowness defined as the inverse 
of wave velocity, and 

1 2 3
( , , cos )n n n  n  

(see Figure 1) is the direction of propagation 
of the plane wave defined above. It is also 
called the wave normal, which is an axis 
normal to the plane that has a constant 
displacement at any time. Shear-wave (S-
wave) is defined as a displacement vector 
propagating in the direction of n, however, 
does not have any component in the 
propagating direction. On the other hand, P-
wave (either compressive or tensile wave) is 
defined as a displacement propagating in the 
direction of n, and has just one component in 
the propagating direction. Both S- and P-
waves are functions of position, say  
(

1 2 3
, ,x x x ) in Cartesian coordinate system or 

( , ,r z ) in cylindrical coordinate system. SH-

wave is called as the shear-wave, which is 
propagating in the direction shown by n  in 
r z  plane, however, it does not have any 
component in this plane. We denote SV-
wave to be the shear-wave propagating in 
the direction given by n in r z  plane, 
which has just one component normal to n in 
r z  plane.  
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Fig. 1. A schematic illustration for showing P-, SV- and SH-waves traveling in the direction of n at a point M of a 

full-space occupied by transversely isotropic material 
 

Substituting Eq. (8) into Eq. (5), results in 
two independent equations for the amplitude 
of different waves induced by F and c, 
which may be expressed as: 
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in which the coefficients b1 and b2 are: 
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Let’s consider Eq. (9) first. One may, 
from this equation, write 
 2 2 2 2 2 2

0 0 0
sin cos 0s S s c    , which 

results in; 
 

 

1

2 2
66 44

sin cos

SH
v S
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
 (12) 

 

SH
v  is called SH-wave velocity. As 
observed, it is a function of the direction of 
propagation in any plane containing 3

x -axis. 

Because of symmetry exists in 3
x -plane  

( 1 2
x x -plane), SH

v  is independent of the 
orientation of propagation direction in 

1 2
x x -plane. The special cases of this 
velocity are discussed in the next sub-
section. However, here it is proved that the 
displacements due to  -function is related 
to SH-wave. To do so, it is observed from 
the linearity of the Eq. (1) with respect to 

i
u  

and Eq. (3) with respect to F and c, that the 
displacement field that merely corresponds 
to the function   could be expressed as: 
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from which it is clear that there does not 
have any component in the 3

x - direction. In 
the other words, it lies in the plane of 
isotropy 1 2

( : )o x x . Moreover, the inner 
product of the displacement vector and the 
direction of propagation is zero. 
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which shows that it is perpendicular to the 
wave normal, namely it is polarized in the 
plane of isotropy. Eqs. (13) and (14) prove 
that the function   makes solely SH-waves.  

Now, we are going to investigate the 
waves due to the function F . To do so, we 
consider Eq. (10), which results in the 
following equation for the slowness: 

 
4 2

1 2
1 0b S b S    (15) 

 
where b1 and b2 are given in Eq. (11). Using 
the formula for the roots of the quadratic 
equation, one may obtain the following 
velocities, as the inverse of slowness, for the 
waves induced by the function F . 
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 (16) 
 
where 

L
v  and 

T
v  are the velocities for 

longitudinal and transverse waves, 
respectively. By the definition given earlier, 

L
v  and 

T
v  are respectively the velocities of 

P- and SV-waves. These waves are polarized 
in a plane containing 

3
x -axis.   As seen, 

these velocities also depend on the direction 
of propagation in any vertical plane 
containing 

3
x -axis. Although 

L
v  is the 

longitudinal wave velocity, it is a function of 

44
C , which is a shear modulus. Moreover, 

T
v  

is transverse wave velocity, however, it is a 
function of  

11
C  and 

33
C , which are axial 

moduli of elasticity. Because of this, we call 
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L
v  and 

T
v  as quasi-longitudinal and quasi-

transverse velocity, respectively. 
 
Special Cases 

In this section, we investigate the 
velocities obtained in previous section for 
some special directions, and special 
materials degenerated from transversely 
isotropic material. By this target, the 
following cases are considered: 
 
Case (1)  

The incident wave along the axis of 
symmetry 0   (Figure 1): In this case, 
the wave travels in vertical direction and the 
velocities of SH-, SV- and P-waves are given 
by: 

 

44 33
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v C v C
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 


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
 (17) 

 
As seen, the velocity L

v  is written in terms 

of longitudinal stiffness, and T
v  depends on 

shear modulus. Thus, these two waves are 
respectively pure longitudinal and pure 
transverse waves.    

 
Case (2)  

The incident wave normal to the axis of 
symmetry 90   (Figure 1): In this case, 
the wave propagates in a horizontal 
direction. The velocities of different waves 
are written as: 
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which shows that 

L
v  is again a function of 

solely longitudinal stiffness and 
T

v  is a 
function of shear stiffness only. As 

observed, the wave is either pure 
longitudinal or pure transverse wave.   
 
Case (3)  

The case where the parameter   is equal 
to zero: This case is a constrained 
transversely isotropic material subjected to 
the equation: 
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for d = 0. In this case, W is also changed as: 
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which leads to: 
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As it is observed, in this case, the velocities 
of both longitudinal and transverse waves 
depend on both shear and 
compressive/tensile moduli. This matter is 
inherent in 2

1
s  and 2

2
s , which exist in the 

expression of  2
L

v  and 2
T

v  given in Eq. (23). 
To go more to the details of these velocities, 
we, from Eq. (19) , see that d = 0 results in 
either 2

2
1s   or 2 2 2

1 1 2
s c c  or both of 

these are valid. Referring to Eq. (7), one may 
deduce that: 
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Therefore, if 2

2
1s   then: 
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This is the solely case considered by Kirkner 
(1982), when he formulated forced vibration 
of a rigid disc attached on the surface of a 
homogeneous constrained transversely 
isotropic half-space. It should be mentioned 
that the forced vertical, rocking and 
horizontal vibrations of rigid disc attached 
on the surface of a transversely isotropic 
half-space or buried in a full-space or placed 
at an arbitrary depth of a half-space have 
been rigorously investigated in (see 
Eskandari-Ghhadi et al., 2010, 2012) with 
the use of the potential functions given in 
Eq. (3) and (5), for the general transversely 
isotropic materials.   

If 2
2

1s   and Eq. (26) holds, then 
 

 2 2
11 33

44

sin cos ,

.

L

T

v C C

v C

  



 


 (26) 

  
As seen, the longitudinal wave velocity is 
independent of shear moduli and in the same 
way, the transverse wave velocity does not 
depend on compressive/tensile elasticity 
coefficients. If 2 2 2

1 1 2
s c c  then 

 
2
2 44 33 13 44

, 0s C C C C    (27) 

 
and the velocities are determined as: 
 

 
 

2 2
11 44

2 2
44 33

sin cos ,

sin cos

L

T

v C C

v C C

  

  

 

 
 (28) 

  
Here, we see that both the longitudinal and 
transverse wave velocities depend on a 
combination of shear and axial moduli. 
Eventually, when both 2

2
1s   and 

2 2 2
1 1 2

s c c  are valid, then 

 
13 44 13 33

0, 0C C C C     (29) 

 
and 
 

 2 2
11 44

44

sin cos ,

.

L

T

v C C

v C

  



 


 (30) 

 
The velocities given in Eq. (30) shows that 

in this constrained transversely isotropic 
material, only the longitudinal wave velocity 
depends on both shear and axial moduli, 
while the transverse wave velocity does not 
depend on any axial elasticity coefficient. 

 
Case (4)  

The isotropic material: In this case the 
elasticity coefficients are expressed as: 
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11 33 12 13 44
2 , ,C C C C C          

 (31) 
 
where 1 and m are Lame's constants. 
Substituting Eq. (31) in Eq. (7) one may 
deduce that 2 2

1 2
1s s   and d = 0. From Eq. 

(26) for the case of d = 0 and considering 
Eqs. (31) and (12), Eq. (32) is obtained. 
 

, ( 2 ) ,
SH L T

v v v           

 (32) 
 
RAYLEIGH WAVE 
 
To study the Rayleigh wave in the domains 
containing transversely isotropic material in 
detail, we consider, as usual, a homogeneous 
transversely isotropic half-space in such a 
way that the planes of isotropy are 
perpendicular to the 3

x -axis. We take the 
origin of the coordinate system at an 
arbitrary place on the free surface 

3
( 0)x   

and the 
3

x -axis is considered as a pointing 
vertically downward into the half-space, so 

that the half-space is represented by 
3

0x  . 
As mentioned earlier, we also assume that 
the surface 

3
0x   to be stress free, so that 

the Cauchy stress component 
13 23
,S S  and 

33
S  

are zero at 
3

0x  . We choose 1
x -axis in the 

direction of wave propagation so that all 
particles on a line parallel to 2

x -axis are 
equally displaced. Therefore, all the field 
quantities will be independent from 

2
x -

coordinate.  
Following Chadwick (1989), we seek the 

solution of Eq. (5) in the form of (see Figure 
2): 
 

 1 3i S x S x t
F he

  
  

(33) 

 
where h is an unknown parameter that must 
be determined by substituting Eq. (34) into 
the Eq. (5) and also satisfying the regularity 
condition: 
 

3
0 asF x    (34) 

 

O x 1

x 3

S   x , x =0, t  =S   x , x =0, t  =01 3 1 313 33

i   sx +   x -t    -     x3j3j1u  x , x ,t  =A e                 e
1 3

ω κ ωυ

(                ) (                )

(          ) (               )
j j

j=1      2and

  
Fig. 2. A homogenous transversely isotropic half-space with an incident wave in 

1 3
x x  plane 



Raoofian Naeeni, M. and Eskandari-Ghadi, M. 

 
272 

 

Substituting Eq. (34) into Eq. (4), it is 
seen that there does not exist any component 
for the displacement in 

2
x direction. 

Replacing Eq. (33) into Eq. (5) results in the 
following equation for determination of  : 

 
4 2

1 2 3
0J J J     (35) 

 
where 
 

 
2 2

4 2 2 4 21 2
1 2 1 2 2 2

1 2

4 2 2 2
3 1 22 2 2 2

1 2 1 2

1
, ,

1 1 1

s s
J S J s s S S

c c

J S S s s
c c c c

          
                       

 

 (36) 
 

The solution of Eq. (35) may be 
determined as: 

 

1 1

2 4 2
1 2 3 4 5

2 2

2 4 2
1 2 3 4 5

1 1

2

2

1 1

2

2

S S

a a S a S a S a

S S

a a S a S a S a

 

 

  

   

  

   

 (37) 

 
in which 
 

 
 

2 2
2 21 2

1 2 1 22 2
1 2

2
2 2

3 1 2

2 2
2 2 1 2

4 1 2 2 2
1 2

2
2 2

2 2 1 2
1 2 52 2 2 2

1 2 1 2

1
, ,

1

1 1 1
2 ,

s s
a a s s

c c

a s s

s s
a s s

c c

s s
s s a

c c c c

   

 
        

                 

 (38) 

 
Now, by defining 

j
  for 1, 2j   as: 

 

 , 0, 1,2
j j j j

i i          (39) 

Since, we encounter the wave approaching 
the free surface 

3
( 0)x  , those hj with 

negative imaginary part must be discarded. 
As a result, the function F is expressed as: 

 
 

 

1 1 31 3

1 2 32 3

1

2
.

i Sx x tx

i Sx x tx

F h e e

h e e

 

 

 

 




 (40) 

  
With the use of Eq. (3) and the strain-
displacement and the stress-strain 
relationships, the following relations for the 
stresses 

33 31
,S S  are obtained: 

 

   

  

3

2 3 12
1 3

13 44 2 2
0

2 2
1 11

3

33 33 1 13 3 2
1 3

3 3

2 33 0 333 2
3 3

1

,

1

1

,

F

x x
S C

F
xx t

F
S C C

x x
F F

C C
x x t

  




 

 

                           


  
 

 
 

  

 

 (41) 
 
and the stress 

23
S  would be zero. From the 

above relations, the stress free conditions at 
the surface 

3
0x   results in: 

 

1 1 2 2 1 1 2 2
0, 0h h h h        (42) 

 
where 
 

2 2
2 3 1 0

2
33 1 13 3

2
33 2 33 0

( ) ( ) ( ) (1 ) .

(1 )
( ) ( ),

( )

j i

j i
j

S S S

C C S
S S

C S C

     

 
 

  

    
              

 

 (43) 
 
for  j=1,2. The determinant of the coefficient 
matrix must be zero to have a nontrivial 
solution for Eq. (42). This, results in the 
following equation for the Rayleigh wave 
slowness: 
 



Civil Engineering Infrastructures Journal, 49(2): 263 – 288, December 2016 

 
273 

 

1 2 2 1
( ) ( ) ( ) ( ) 0.S S S S      (44) 

 
Substitution of Eq. (43) into Eq. (44) and 
rationalizing the result, one may arrive at 
any of the following equations governing the 
Rayleigh wave slowness: 

 
4 2

3 4 5
2 0N a S a S a     (45) 

 
or 
 

 
 

2 1 1 2

1 1 2 2
0

R f g f g M

f g f g N

  

 
 (46) 

 
in which 

3
a , 

4
a  and 

5
a  have been given in 

Eq. (39) and 
 

 

 
 

 

2
1 2

2
2

1 33 1 13 3 33 2
2 2
33 2

2 33 2

33 1 13 3 33 2
2

2
1 1 0 2 3

2
2 3

2 2 3

2
1 0 2 3

2 (1 )

,

2

2 (1 )

2 (1 ) ( )

( ) ,

2( )

2 (1 ) ( )

M a a S

f C C S C M

C N

f C

C C C M

g S M

N

g

S M

  




  

   

 
 

   

 

      



     

        

 
      

 

 (47) 
 
Eq. (45) is a bi-quadratic equation in 

terms of S and its roots are 
1

S  and 
2

S , 
which are defined later in Eq. (58). 
However, Eq. (46) is a bi-quartic equation in 

2S  and its roots are: 
 

2 *4
1,2

5

2 22
1 3,4*

* 24 2
1 *

5

4

4 2 ,

4 2 .
4

O
S L

O

k
L k S

L
O k

L L k
O L

   

   

     

 (48) 

 The parameters 
4 5 1 2
, , , ,O O k k L  and the 

details of determining these roots are given 
in Appendix A. 
 
Rayleigh Wave Slowness in Isotropic 
Material 

In this section, we investigate the solution 
of Eq. (44) for isotropic materials to prove 
the validity of this equation. For simplicity 
of computations, and to avoid the emergence 
of auxiliary roots as a result of rationalizing 
of Eq. (44) for general transversely isotropic 
materials (see Eqs. (45) and (46)), Eq. (44) is 
directly evaluated for isotropic materials, 
first. It is emphasized that in the case of 
isotropic material with   and   as its 

Lame's constants, we have 
2 2
1 2

1 1

ˆ ˆ
N

c c
   

which is always non-zero with 
1̂

( 2 )c      and 
2̂

c   . 

Considering Eq. (31), one may deduce the 
following relations for isotropic materials 

 

 
 

   
 

 

2

2

2
1 1

2
2

2
1

2
2

1
, 1, 2

ˆ

2 ,

2 ,

2 2
,

2

2
,

j

j

S j
c

S

S

S

S



 
    


  

    


   

    


  

   

       
 

 
 



 
 

 (49) 

 
and thus Eq. (44) changes to 
 

3

2 4 2 2

2 2 2
2 2 1

1 1 1
0,

ˆ ˆ2
S S S S

c c c

                              
 

 (50) 
  
which results in a bi-cubic equation for S  
and its solution may be given as  
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2 0
2

1

1
,

3
1,2,3

k k
k

S a D
a D

k




          


 (51) 

 
where 
 

1 2

3 2 2 2 2
2 2 1

2 3
1 1 03

2
0 2 1 3

3 2
1 2 1 2 3 1 4

1 3 42 2 6 8
1 2 2 2

1 3
1, ,

3
1 3 1 3 1

, ,
3 ˆ ˆ ˆ2

4
,

2
3 ,

2 9 27 ,

1 1 1 1
, , ,

ˆ ˆ ˆ ˆ2 16

i

i
a

c c c

D

a a a

a a a a a a

a a a
c c c c

 



 
 

           

    


    
        

           

 

 (52) 
 

Considering the relation in Eq. (49) and 
noticing that 

1 2
ˆ ˆc c , it is seen that 

( 1,2)
j

j   can be either real or pure 

imaginary number provided that 
1̂

1S c  or 

2̂
1S c , respectively. However, the 

radiation condition in Eq. (34) implies that 
2̂

1S c  must be hold. It should be 

mentioned that if  
1 2

ˆ ˆ1 1c S c   then 
2
  

will be real number, which violates the 
radiation condition. 

For the case of Poisson material, where 
  , we have 2 2

1 2
ˆ ˆ3c c  and Eq. (51) 

accompanied with Eq. (52) results in 
 

2 2

2

ˆ ˆ2 , 2 2 3 ,1

ˆ2 2 3
R

c c
v

S c

             

 (53) 

 
where R

v  denotes the Rayleigh wave 
velocity. The two first roots violate the 
radiation condition and as a result for 

Poisson material we have 
2̂

2 2 3
R

v c   

which is exactly the same as that reported 
Rayleigh wave velocity in Graff (1991). 
 
Rayleigh Wave Slowness in Transversely 
Isotropic Materials 

After proving the validity of Eq. (44) for 
isotropic materials, we, in this section, 
investigate the nature of the roots of Eq. (44) 
for general transversely isotropic materials. 
As it has been shown, the solutions of Eq. 
(44), must satisfy either Eq. (45) or Eq. (46), 
which have been derived in the course of 
rationalizing Eq. (44). First, we consider the 
nature of the roots of Eq. (46), when 0N  . 
To do so, we first describe the behavior of 

( 1,2)
j

j   in Eq. (37), which defines the 

critical bounds for the values of S derived 
from Eqs. (45) and (46). First, we should 
mention that ( 1,2)

j
j   must be either 

complex conjugate numbers or pure 
imaginary numbers to satisfy the radiation 
condition. The formulation for ( 1,2)

j
j   

may be concisely written as  
 

1

2

1
,

2
1

2

M N

M N





  

  
 (54) 

 
where M and N has been defined in Eqs. (45) 
and (47), respectively. Since S is the 
reciprocal of velocity, from the physical 
point of view it must be real and positive. 
Thus, it, from Eqs. (38) and (24), is clear 
that both M and N are real. To have 

1
  and 

2
  to be complex conjugates, N must 
necessarily be negative, otherwise both 1

  
and 

2
  become either real numbers or pure 

imaginary ones. To discuss about the sign of 
N as a function of S, one must first solve the 
equation 4 2

3 4 5
( ) 2 0N S a S a S a     for S. 



Civil Engineering Infrastructures Journal, 49(2): 263 – 288, December 2016 

 
275 

 

As seen, this equation is a bi-quadratic 
equation in terms of S and its discriminate 
may be expressed as 
 

 
    

2
4 3 5

2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 1 2 2

4 4
1 2

4

16 1 1
.

a a a

s s s s c c s c c s

c c

   

     

 (55) 
 
D, based on Eq. (55), is a real number. Here, 
assuming that all coefficients in Eq. (38) are 
nonzero, we are going to investigate the 
nature of the roots of N which depends on 
the combination of the signs of 

3
a , 

4
a  and 

D. 
If 0  , then the roots of N are all 

complex conjugates and the sign of N is the 
same as the sign of 3

a . From Eq. (38), and 

the nature of 2
1

s  and 2
2

s , it is clear that the 
coefficients 

1
a  and 

5
a  are always positive 

and the other coefficients could be either 
positive or negative numbers. If 2

1
s  and 2

2
s  

are real, then 
3

a  would always be positive, 
and if they become complex conjugates, then 

3
a  would always be negative. However, 
when 

3
a  is negative, then Eq. (55) shows 

that  is necessarily positive, which is not 
the case. Therefore, if 0  , then N would 
always be positive.  

If 0  , then N has duplicated roots, 
which may be either real or pure imaginary 
depends on the sign of 

4
a . The sign of N is 

the same as the sign of 
3

a . It is worth 
mentioning that 

3
0a   is necessary 

condition for 0   (see Eq. (55)). 
Consequently, similar to previous case, if 

0   then N is always positive.  
If 0  then the following cases may 

occur: 

Case (i) 
4

0 a   , which shows that 

both 3
a  and 4

a  must be positive, then all 
four roots are real. 

Case (ii) either 
4

0 a    or 

4
0a    , which shows that 

4
a  may be 

either positive or negative and 
3

a  is 
negative, then two roots (

1
S  and 

1
S  in Eq. 

(58)) are real and the other two (
2

S  and 
2

S  
in Eq.(58)) are pure imaginary. 

Case (iii) 
4

a   , which shows that 

4
a  is negative and 

3
a  is positive, then all 

four roots are pure imaginary. 
In the Case (i), N is negative provided 

that 
 

2 1 1 2
S S S or S S S      (56) 

 
and it is positive if 
 

2

1 1

2

0

0

S S or

S S S or

S S

 
  
 

 (57) 

 
where 
 

 
 

1 4 3

2 4 3

,

.

S a a

S a a

  

  
 (58) 

 
However, S , based on its definition, must 
be positive. Thus, the conditions of Eqs. (56) 
and (57) could be modified as:  

 

1 2
S S S   (59) 

 
for N  to be always negative, and  
 

1 2
0 0S S or S S     (60) 
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for N  to be always positive. 
Based on the conditions given in Case (ii) 

and Eq. (58), it is seen that when Case (ii) 
occurs, then 

2
S  is always a pure imaginary 

number and 
1

S  is a real number. Therefore, 
N  would be positive provided that  
 

1
0 S S   (61) 

 
and it is negative if  
 

1
S S  (62) 

  
In the Case (iii), the sign of N is the same as 

3
a  which is always positive. 

Since M is a real number, if N become 
positive then both 

1
  and 

2
  must be pure 

imaginary numbers in order that the 
radiation condition to be satisfied. The 
necessary and sufficient condition to have 
both 

1
  and 

2
  to be pure imaginary 

numbers is that 
 

M N  (63) 

 
which guarantees that 

1
0M  . However, M 

is a negative number if and only if  
 

2 2
1 2

0 ands s S S     (64) 

 
where 
 

    2 2 2 2 2 2
1 2 1 2 1 2

1S s s c c s s     (65) 

 
If 2 2

1 2
0s s  , then M has imaginary roots 

and it is always positive. To have M N  
it is necessary that  

 

1 2 1 2

1 1 1 1
0 min , or max ,S S

c c c c

                 
 

 (66) 

which depends on the condition that 
1 2

c c  

or 
1 2

c c . Contrary to isotropic materials, 

where 
1 2

ˆ ˆc c , in transversely isotropic 
media, the order of wave speeds depend on 
some combinations of elasticity coefficients 
(see Chadwick, 1989). As a result it can be 
said that two kinds of Rayleigh waves may 
propagate in transversely isotropic half-
space. If both 

1
  and 

2
  are pure imaginary 

numbers then there exists a kind of Rayleigh 
wave, which attenuates continuously in 
exponential manner with depth. We call this 
kind of Rayleigh wave as the first kind. If 

1
  

and 
2
  are complex conjugate numbers with 

positive imaginary parts, then there exists a 
wave, which propagates periodically in z-
direction, however it is also attenuated 
exponentially with depth. We call this as the 
second kind of Rayleigh wave. It is clear that 
the first kind of Rayleigh wave is same as 
the one that propagates in isotropic half-
spaces. 
 According to the above discussion, the 
nature of Rayleigh wave based on the sign of 
 , 

3
a  and 

4
a  could be concisely 

categorized as:  
Case (a): The Rayleigh wave is of the 

first kind provided that 2 2
1 2

0s s   and any 
of the conditions 

 

 
 

4

1 2

1 2

1 2

0 and

0

0

0 min 1 ,1

max 1 ,1

a

S S or S S

S S

S c c or S

c c



 
          

 (67) 
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 
 

4 4

1

1 2

1 2

0 and

0 0

0

0 min 1 ,1

max 1 ,1

a or a

S S

S S

S c c or S

c c



 
             

 (68) 

 
 

4

1 2

1 2

0 and

0 min 1 ,1

max 1 ,1

a

S S

S c c or S

c c



 
      

 (69) 

 

 
 

1 2

1 2

0 or 0

0 min 1 ,1and

max 1 ,1

S S

S c c or

S c c



   
    

 (70) 

 
with S being the root of Eq. (46) is hold. 
 Case (b): The Rayleigh wave is of the 
second kind provided that either of the 
following two conditions is held. 
 

4

1 2

0
0 and

a

S S S

       
 (71) 

4

4

1

0 or

0 and 0

a

a

S S

         

 (72) 

 
According to Eq. (54), the equation (45), 
which itself has been derived from 
rationalizing of the Eq. (44), results in  

 

1 2

1
2

M        (73) 

 
and therefore Eq. (40) degenerates to  

 1 3i Sx x t
F he

     (74) 

 
Substituting Eq. (74) into Eq. (41) results in 

 
0, 0h h    (75) 

 
where 
 

2
2 3

2
1 0

2
33 1 13 3

2
33 2 33 0

( ) ( ) +

(1 ) .

( )

(1 )
,

S

S

S

C C S

C C

   

 


 


  

 

 


             

 (76) 

 
One possible solution for Eq. (75) is 
0h  , which shows that the Rayleigh wave 

is vanished. If 0h  , then the following two 
equations must simultaneously be satisfied:  

 
0, 0    (77) 

 
Eq. (77) results in two different values for 

,S which means that there is not a unique 
solution to satisfy both of Eq. (77), 
simultaneously. The above terminologies 
demonstrate that 0N   is physically absurd.  
 
The Nature of Rayleigh Wave in Terms of 
Elasticity Coefficients 

Having determined the possible nature of 
the Rayleigh wave in transversely isotropic 
half-space in terms of D, 

3
a  and 

4
a  (see 

Eqs. (67) to (72)), in this section, the sign of 
D, 

3
a  and  

4
a  are investigated based on the 

combinations of elasticity coefficients and 
determine the conditions for occurrence of 
two possible Rayleigh waves in terms of 
elastic moduli of transversely isotropic 
materials. At first, the situation of  0  is 
considered, which includes Cases (i), (ii) and 
(iii).  
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When 0 , one of the following two 
conditions must be held 

 

13 44 11 44 33

44

13 44 11 44 33

44

( )( )

( )( )

.

C C C C C

C or

C C C C C

C

   

   
 (78) 

 
In Eq. (78), either 

44 11 33
max( , )C C C  or 

44 11 33
min( , )C C C  in order that the right 

hand sides of these inequalities do not 
contain a complex number. In the Case (i), 
both 3

a  and 4
a  are positive. However, 3

a  is 
positive if one of the following conditions is 
held.  

 

13 11 33

13 11 33 44

11 33 44 13 11 33
2
44 11 33

11 33 13 11 33 44
2
44 11 33

,

2

2 ,

and

2 ,

and

C C C

C C C C

C C C C C C

C C C

C C C C C C

C C C



 

  



   



 (79) 

 
and finally 

4
0a   if  

 

 

 

2
44 33 44 11 33

44 33

44 13

2
44 33 44 11 33

44 33

44

( )

( )

C C C C C

C C
C C

C C C C C

C C
C

 
 


 

 




 (80) 

 
 In inequalities of Eq. (80), either 

44 11 33
max( , )C C C  or 

44 11 33
min( , )C C C  to have 

real numbers in the whole inequalities. By 
the combination of all conditions expressed 
in Eqs. (78) to (80) and considering the 
relations, one may derive the necessary and 

sufficient condition for Case (i) to be held 
as: 
 

2
12 13 33 11

44 11 33

2 andC C C C

C C C

 
 

 (81) 

  
in which 

13
C  must satisfy one of the 

following inequalities. 
 

44 11 44 33

44 13 11 33 44

11 33 13 44

44 11 44 33

( )( )

2

( )( )

C C C C

C C C C C

C C C C

C C C C

  

  

   

 

 (82) 

 
For the Case (ii), 3

a  must be a negative 
number, which leads to one of the following 
combined conditions. 

 
 

 

44 11 33

11 33 44 13 11 33 44

11 33 13 11 33

44 11 33

11 33 44 13 11 33

11 33 44 13 11 33

max , and

2 2

or

min , and

2

or

2

C C C

C C C C C C C

C C C C C

C C C

C C C C C C

C C C C C C


       


      

 

 (83) 
 

On the other hand, in this case 4
a  could be 

either positive or negative, which means that 
it can be any real number. Considering 
inequalities of Eqs. (83), (78) and (2), one 
may derive the necessary and sufficient 
condition for Case (ii) to be held as: 

 
2
13

12 11
33

2
C

C C
C

   (84) 
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in which 
13

C  must satisfy the following 
conditions. 
 

11 33 13 11 33
,C C C C C    (85) 

 
if  44 11 33

max ,C C C , and 
 

11 33 44 13 11 33
2C C C C C C    (86) 

 
if  44 11 33

min ,C C C . In the Case (iii), 4
a  is 

negative while 
3

a  is positive. From Eq. (80), 
it is seen that 

4
a  is negative if  

 
 

 

2
44 33 44 11 33

13 44
44 33

2
44 33 44 11 33

13 44
44 33

( )
or

( )

C C C C C
C C

C C

C C C C C
C C

C C

 
 



 
 



 

 (87) 
 

Considering inequalities of Eqs. (87), 
(79), (78) and (2), one may derive the 
necessary and sufficient conditions for this 
case as: 

 
2
13

12 11 44 33 11
33

2 and
C

C C C C C
C

     

 (88) 
 

in which 
13

C  must satisfy either of the 
following inequalities. 
 

44 11 44 33

44 13 11 33 44

11 33 13 44

44 11 44 33

( )( )

2

( )( )

C C C C

C C C C C

C C C C

C C C C

  

  

   

 

 (89) 

 
Based on the inequalities (89) and (82), it 

is seen that the conditions for the Case (i) 

and (iii) are similar, except that in the Case 
(i), C C11 33

 and in the Case (iii) C C11 33
. 

Now, we consider the case of 0   
which results in  

 

44 11 44 33

44 13

44 11 44 33 44

( )( )

( )( )

C C C C

C C

C C C C C

   
 

  

 (90) 

 
where 

44
C  is either larger than 

11 33
max( , )C C  

or smaller than 
11 33

min( , )C C  to have only real 
numbers in the inequalities of Eq. (95). 
Moreover, as it has been stated earlier, in 
this case a3

 is positive. Considering 
inequalities in Eqs. (90), (79) and (2), one 
may derive the following necessary and 
sufficient conditions for this case. 
 

2
13

12 11
33

44 33 11

2 and

min( , )

C
C C

C
C C C

 



 (91) 

  
in which C13

 must satisfies inequalities of 
Eq. (90). 

Eventually, we go through the case of 
0  . This situation results in 

 

13 44 11 44 33 44

13 44 11 44 33 44

( )( ) or

( )( )

C C C C C C

C C C C C C

    

   
 

 (92) 
  
while as before the condition for 

44
C  is 

either 
44 11 33

max( , )C C C  or 

44 11 33
min( , )C C C . Similar to the previous 

case, here a3  is also positive. Considering 
inequalities in Eqs. (92) and (79) and (2), we 
have 
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2
12 13 33 11

44 11 33

2 and

min( , )

C C C C

C C C

 


 (93) 

 
in which 

13
C  must satisfy Eq. (92). From the 

previous discussions, we see that in the 
situations of N  0 , the Rayleigh wave is of 
the first kind. In this case, in addition to the 
constrains for D, a3

 and a4
, another 

auxiliary conditions should also be satisfied, 
which are (see Eqs. (67) to (70)). 
 

 
 

2
44 11 33 44 13

2

1 2

1

44 11 33 4

2

4

0 min 1 ,1

max 1 ,1

C C C C C

C C

S S

S c c or

S c

C C

c



    

   

  



 (94) 

 
The first relation in inequalities of Eq. 

(94) arises from the condition 2 2
1 2

0s s   . 
Collecting the above results, the 

conditions for the Rayleigh wave of the first 
kind may be expressed as: 

If inequalities in Eq. (67) are held, then 
by considering the inequalities in Eqs. (79) 
and (78), one may verify that: 

 
 

 
2 2

, 2

min 1 ,1 and ,

max 1 ,1

c c S S

S c c

 


1

1 2 1

 (95) 

  
from which the inequalities of Eq. (67) may 
be modified as: 

 

44 11 33

44 11 44 33

44 13 11 33 44

11 33 13 44

44 11 44 33

and

( )( )

2

or

( )( )

C C C

C C C C

C C C C C

C C C C

C C C C

 
            

 (96) 

where S   is given in Eq. (70), and S must 
satisfy 
 

2 1 2 1

2 1

max ,1S c S S or S S if S S

S S if S S

 



            

 

 (97) 
  
If Eq. (68) is held, then  

 

1 1 2

1 2

max(1 ,1 ),

min(1 ,1 )

S c c

S c c




 (98) 

 
and the Eq. (68) may be modified as: 
 

13 44

2
44

44 13

11 33

44 11 33

11 33

11 33

44 11 33

11 33

44

2
44

max( , )

m2 ax( , )

C C

C C

C C C

C C

C C

C C C

C C

C

C C C

C


  



   

  


 

 (99) 
 
in which S should satisfy  
 

 

 

1 2
1

1

1
1 2

max ,max 1 ,1

max

,max 1 ,1

S c c
if S S

S S

S
if S S

S c c







                

 

 (100) 
 
If Eq. (69) is held, then  
 

   2 2
min 1 ,1 max 1 ,1c c S c c 1 1  

 (101) 
 
which modifies Eq. (69) as: 
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44 11 44 33

44 13 11 33 44

44 33 11

11 33 13 44

44 11 44 33

( )( )

2

or and

( )( )

C C C C

C C C C C

C C C

C C C C

C C C C

              

 

 (102) 
 
where   
 

 1 2
max 1 ,1S c c  (103) 

 
If Eq. (70) is held, then S   lays in the 

range given in Eq. (101), and in this case we 
have: 

 

44 11 44 33

44 13

44 11 44 33 44

( )( )

( )( )

C C C C

C C

C C C C C

   
 

  

 (104) 

 
in which S  should be larger than the 
maximum of  1 2

1 ,1c c  as indicated in 

(103). Moreover, in this case if 0   then 
44 33 11

min( , )C C C  and if 0   then 

11 33
C C  and the condition for 

44
C  is 

44 11 33
min( , )C C C .  

Finally, the conditions for the Rayleigh 
wave of the second kind may be expressed 
as either 

 
44 11 33

44 11 44 33

44 13 11 33 44

11 33 13 44

44 11 44 33

and

( )( )

2

or

( )( )

C C C

C C C C

C C C C C

C C C C

C C C C

 
            

 (105) 

 
in which S should lay in the range of  
 

1 2
S S S   (106) 

or 
 

 

 

44 33 11

11 33 13 11 33

44 11 33

11 33 44 13 11 33

44 11 33

max ,

2

min ,

C C C and

C C C C C

and C C C

or

C C C C C C

and C C C

 
       

 
(107) 

 
in which S is larger than 

1
S  

 

1
S S  (108) 

 
In all cases, the elasticity coefficients 

must also satisfy Eq. (2). 
 
NUMERICAL RESULTS 
 
In this section, we present the numerical 
evaluations of body and Rayleigh wave 
velocities for some synthetic transversely 
isotropic materials. The normalized elasticity 
coefficients of the selected materials are 
listed in Table 1. They are normalized 
according to the elasticity parameters of 
isotropic material expressed in Table 2 (the 
coefficients of transversely isotropic 
materials are divided by corresponding 
isotropic one). The elastic parameters of the 
synthetic materials have been selected in 
such way that the conditions for positive 
definiteness of strain energy function 
according to Eq. (2) or are satisfied. 
Moreover to grasp the two different kind of 
Rayleigh wave propagation, and to clarify 
the characteristic nature of the roots of 
Rayleigh wave slowness functions in terms 
of elastic parameters, the restrictions placed 
on which according to inequalities of Eqs.  
(81), (82), (84), (85), (86), (88), (89), (90), 
(96), (99), (102), (105) and (107) are also 
considered. Figures 3-5 show respectively a 
graphical representation for quasi-
longitudinal, quasi-transverse and SH- waves 
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in terms of incidence angle j for the 
synthetic materials listed in Table 1. 
Material 1 is isotropic; therefore, as it is 
expected and could be seen in the figures, its 
body wave velocities are independent from 
the direction of propagation. The maximum 
longitudinal wave velocity belongs to 
Material 9 and its minimum occurs for 
Material 2. As could be seen in the Figure 3, 
the longitudinal wave velocities of Materials 
5 and 6 are nearly the same. This also 
happens for Materials 7, 8 and 10. The 
transverse wave velocities for Materials 5, 6, 
7, 8 and 10 are approximately equal and as it 
is observed in figure 4, the transverse waves 
of these materials are very small depend on 
the angle of incidence. Table 3 shows the 
Rayleigh wave slowness for different 
synthetic materials listed in Table 2. In this 

table, the nature of 2
1

s , 2
2

s ,  , 3
a , 4

a  and 
the type of Rayleigh wave has also been 
included. The Rayleigh wave slowness for 
each material is derived from zeros of the 
polynomial function, 0R  , given in Eq. 
(46) or equivalently in Eq. (A1) (see 
Appendix). Since the equation 0R   has 
been derived by rationalizing of Eq. (44), 
some auxiliary roots may be produced which 
have no relevance to Rayleigh wave 
slowness. The correct root that is related to 
Rayleigh wave slowness is determined with 
the use of the critical bounds on S presented 
in Eqs. (97), (100), (103), (106) and (108) 
depend on the conditions of  , 

3
a , and 

4
a  

as stated in previous section.  
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Fig. 5. Comparison of SH-wave velocity as a function of incident angle 



Raoofian Naeeni, M. and Eskandari-Ghadi, M. 

 
284 

 

CONCLUSIONS 
 
With the use of potential function method as 
a powerful tool for solving a system of 
partial differential equations, the harmonic 
wave propagation in transversely isotropic 
media has been investigated in details. The 
velocities of the transverse and longitudinal 
waves have been derived explicitly and it 
has been shown that the shear wave velocity, 
in some directions of propagation, may 
depend on some elasticity constants other 
than the shear modulus. In the same way, the 
longitudinal wave velocity may depend on 
shear moduli for some propagation 
directions. Since, one of the potential 
functions used in this paper produces solely 
the displacements of horizontally polarized 
shear wave, the SH-wave velocity has been 
investigated in an elegant manner. The 
Rayleigh wave velocity has been rigorously 
investigated, where two different kinds for 
this wave has been recognized. Some 
transversely isotropic materials with 
different natures in wave propagation point 
of view have been produced and the 
velocities of different waves have been 
given. 
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APPENDIX  
 
The details for Rayleigh wave slowness: 

Eq. (46) is expressed as a bi-quadratic polynomial in 2S : 
 

8 6 4 2
5 4 3 2 1

0R O S O S O S O S O       (A1) 

 
where 
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and 1
a  to 5

a  have been defined in Eq. (38). The solution of Eq. (A1), may be expressed as: 
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Table A1. Normalized elasticity coefficients of synthetic transversely isotropic materials with respect to elastic 

parameters of isotropic material given in Table A2 

Material No. 11
11

11iso

C
C

C
  12

12
12iso

C
C

C
  13

13
13iso

C
C

C
  33

33
33iso

C
C

C
  44

44
44iso

C
C

C
  

1 1.000 1.000 1.000 1.000 1.000 
2 1.16667 2.500 0.750 0.167 1.000 
3 1.66667 1.000 1.750 0.417 0.500 
4 8.333 3.500 0.750 4.000 1.000 
5 11.667 15.00 -8.200 16.667 25 
6 11.667 34.50 -40.85 16.667 25 
7 16.667 15 -8.20 11.667 25 
8 16.667 47.50 -40.85 11.667 25 
9 16.667 15.00 -8.20 11.667 55 
10 16.667 15.00 -8.00 11.6667 25 

 
Table A2. Elasticity coefficients of isotropic materials used for normalization 

11iso
C  

12iso
C  

13iso
C  

33iso
C  

44iso
C  

60000 20000 20000 60000 20000 
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Table A3. Rayleigh wave velocity 
Material 

No. 
Nature of 2

1s , 
2
2s  

Sign of 
2 2
1 2s s+  

The Nature of 
∆ , 4a , 3a  

Rayleigh Wave 
Slowness 

The type of 
Rayleigh Wave 

1 Real Positive - 0.054383  First Kind 

2 Complex 
Conjugate Negative 

0∆ > , 40 a< < ∆  
or 

4 0a− ∆ < <  
0.069093  Second Kind 

3 Complex 
Conjugate Positive 

0∆ > , 40 a< < ∆  
or 

4 0a− ∆ < <  
0.076581 Second Kind 

4 Real Positive 0∆ <  0.050087  First Kind 
5 Real Positive 0∆ > , 40 a< ∆ <  0.012317  Second kind 

6 Real Positive 0∆ > , 40 a< ∆ <  0.053211 First Kind 

7 Real Positive 0∆ > , 4a < − ∆  0.011969  First Kind 

8 Reals Positive 0∆ > , 4a < − ∆  0.048758  First Kind 

9 Complex 
Conjugate Positive 

0∆ > , 40 a< < ∆  
or 

4 0a− ∆ < <  
0.010582  Second Kind 

10 Complex 
Conjugate Positive 

0∆ > , 40 a< < ∆  
or 

4 0a− ∆ < <  
0.011962  First Kind 

Material 
No. 

Corresponding 
Inequalities 

Quai-
Longitudinal 

Wave Velocity 
Lv ,  for Zero 

Incident Angle 

Quai-Transverse 
Wave Velocity Tv  for 
Zero Incident Angle 

Horizontally 
Polarized 

Shear Wave 
Velocity 

SHv   for 
Normal 

Incident Angle 

The Ratio of 
Rayleigh Wave 

Velocity to  
Quai-

Transverse 
Wave Velocity 

1 - 20 3  20  20  0.9194 

2 Eq. (72) 10 2  20  10 2  0.7237 

3 Eq. (72) 10 5  10 2  20 2  0.9233 

4 Eq. (70) 40 3  20  10 43  0.9982 

5 Eq. (71) 100 2  100  20 10  0.8118 

6 Eq. (67) 100 2  100  10  0.1879 

7 Eq. (69) 20 35  100  10 70  0.8355 

8 Eq. (69) 20 35  100  10 5  0.2051 

9 Eq. (72) 20 35  20 55  10 70  0.6371 

10 Eq. (68) 20 35  100  10 70   

 


