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Abstract 

 
The enhancement of efficiency in gas turbine engines requires 
the development of new superalloys capable of withstanding 
higher temperatures. The development of new industrial cast and 
wrought (C&W) disk alloys with required combination of 
strength, creep and fatigue properties at 700°C is highly desired 
due to the expensive cost of powder metallurgy. AD730TM, 
which is the newly nickel base superalloys developed by Aubert 
& Duval, was therefore designed to offer a better combination 
between high temperature properties at 700°C and cost 
compared to other C&W superalloys. This paper describes the 
alloy design based upon the chemistries of the previous 
experimental alloys Ni30 and Ni33 [1-2]. The control of 
expensive elements contents and the presence of iron in 
AD730TM alloy confer to this alloy an attractive cost compared 
to other C&W superalloys for disk applications. Gamma prime 
solvus was decreased compared to Ni33 in order to improve hot 
workability and (Ti+Nb)/Al ratio was decreased compared to 
Ni30 and Ni33 in order to avoid any risk of Eta-phase 
precipitation. It was actually observed that the precipitation of 
the needle-shape Eta-phase predicted by the thermodynamic 
databases was not in agreement with experimental results 
obtained on various alloys of the AD730TM chemical system. 
Industrial ingots with a diameter equal to 500mm were produced 
(Vacuum melting and remelting) and converted to evaluate the 
mechanical properties and the ability for the conventional C&W 
route. A special attention is made in this paper to the AD730TM 
workability which was highly evaluated with various industrial 
forging process routes (close-die forging, ring-rolling...etc). Heat 
treatment optimization was then performed on this alloy in 
regard to tensile and creep properties. The effect of solution 
heat-treatment temperature and cooling rate after solution heat 
treatment were investigated on AD730TM. Solution heat 
treatment temperature has a slight effect on the tensile strength if 
the temperature is lower than the gamma prime solvus. Yield 
strength remains stable and close to 1100MPa at 700°C. 
Solution heat-treatment was therefore optimized in regard of 
grain size in order to increase creep properties. As most of 
superalloys strengthened by gamma prime phase, cooling rate 
after solution heat-treatment has to be as fast as possible to get 
the highest tensile and creep properties.  

 
 
Oil quenching can be easily performed on AD730TM without any 
issues due to the moderate gamma prime content in the alloy 
(35-40%) and the fine grain size. Tensile, creep, long-term aging 
performed on a forged disk heat-treated in optimized conditions, 
are presented and discussed in this paper. A comparison with 
Udimet720TM properties and 718PlusTM ones show that 
AD730TM alloy presents a higher combination between cost and 
mechanical properties at 700°C than current C&W superalloys. 
 

Introduction 
 
The latest design of high-efficiency engines has high 
requirements for the mechanical properties and temperature 
capability of the key components, especially the stages of disk 
where the stress and temperature are the highest. Alloy 
development for turbine disk with high properties up to 700°C is 
consequently crucial in order to improve the thermal efficiency 
in gas turbine engines. 718 superalloy is extensively used for 
turbine disk due to its moderate cost. However, this superalloy is 
not capable of withstanding temperatures higher than 650°C due 
to the coarsening of the strengthening phase gamma double 
prime above this temperature [3-5]. New γ/γ’ superalloys 
(René88DT, N18, RR1000…etc) were therefore developed to 
withstand higher temperature on the turbine discs. These 
superalloys can not be processed by the conventional cast & 
wrought (C&W) route due to their high γ’ fraction and require 
therefore a processing by the expensive powder metallurgy 
route. Progress was made on C&W route, especially with the 
development of triple melt which allowed the manufacturing of 
alloys such U720Li TM, WaspaloyTM, and more recently TMW4 
and 718Plus TM. These superalloys present various combinations 
between cost and mechanical properties. However it can be 
considered that 718Plus and TMW4 do not improve the 
combination between cost and mechanical properties currently 
offered by U720Li. TMW4 shows higher properties than 
U720Li [6-8] but is significantly more expensive due to its high 
cobalt content. Inversely, 718Plus [9-10] presents a lower cost 
(presence of iron and reasonable cobalt content) but restricted 
creep properties at 700°C compared to the current U720Li disk 
alloy.  

 Ni Fe Co Cr Mo W Al Ti Nb B C Zr P 
718 Base 18 - 18 3 - 0.5 1 5.4 0.004 0.03 - 0.01 

718Plus Base 10 9 18 2.75 1 1.5 0.7 5.5 0.004 0.02 - 0.01 
Waspaloy Base - 13.5 19.5 4.25 - 1.5 3 - 0.006 0.05 0.03 - 
U720Li Base - 15 16 3 1.25 2.5 5 - 0.015 0.015 0.03 - 

Table 1: Chemical analysis of various C&W disk superalloys 
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The new nickel base AD730TM superalloy developed by Aubert 
& Duval was designed to improve the combination between high 
temperature properties and cost of the current C&W disk 
superalloys with these following features: 
- mechanical properties close to U720Li and significantly 

higher than 718Plus, Waspaloy and 718 
- cost equal to 718Plus and lower than U720Li and other γ/γ’ 

superalloys for turbine discs 
This paper describes the design of AD730TM and the results 
obtained on full scale production.  
 

Design of AD730  
 
The design of AD730TM was based upon results obtained on 
Ni30 and Ni33 alloys. As Ni30 and Ni33 presented high 
mechanical properties up to 700°C and a moderate cost 
compared than other γ/γ’ superalloys [2], these alloys were 
selected for the final design. All the criteria defined for the 
design of Ni30 and Ni33 [1] were kept to adjust the final 
chemistry. Only slight modifications were made to Ni30 and 
Ni33 in order to improve their workability and their 
microstructural stability in regard of η-Eta phase precipitation. 
As shown in table 2, the chemistry of AD730TM is actually quite 
similar to those of Ni30 and Ni30. The presence of iron and the 
control of expensive elements provide to AD730TM a lower cost 
than other C&W superalloys (figure 1). The (Ti+Nb)/Al ratio 
was supposed to be in relation with γ/γ’ mismatch and to have a 
strong effect on hot mechanical properties. It was the reason 
why high ratio values were selected during alloy design of Ni30 
and Ni33. These ratio values were nevertheless restricted by the 
precipitation of deleterious η-Eta phase which was predicted by 
Thermo-Calc to appear for ratio larger than 3 as shown on figure 
2. However, η-Eta phase was experimentally observed in Ni50 
and Ni40 which respectively have (Ti+Nb)/Al ratio values equal 
to 2.5 and 3. These results show that the precipitation of η-Eta 
phase is not accurately predicted in this chemical system but 
also that (Ti+Nb)/Al ratio values of Ni30 and Ni33 were too 
high to fully avoid η-Eta phase precipitation even if this phase 
was not observed in both alloys. A (Ti+Nb)/Al ratio close to 2 
was therefore selected for the final composition assuming that 
only a slight effect should be observed on mechanical properties 
due to the decrease of this ratio [11]. It is the reason why 
tungsten content was slightly increased in AD730TM in order to 
counterbalance the potential effect of the decrease of (Ti+Nb)/Al 
ratio on the mechanical properties. Secondly, a special attention 
was paid to the workability of the final alloy. A good 
workability above and below γ’ solvus was researched to easily 
control the microstructure on billets and to promote a convenient 
ingot conversion process. Upsetting tests were performed on 
Ni30, Ni33 and U720 at 1160°C with a strain equal to 0.85 and a 
transfer time equal to 30 seconds. No coatings were used to 
provide a thermal protection to the sample.  

Consequently, a decrease of temperature was observed on the 
surface of the sample before upsetting and has lead to the 
appearance of cracks for the alloys with the higher γ’ contents. 
As shown on figure 3, the higher the γ’ solvus, the lower the 
workability due to the precipitation of γ’ phase during cooling 
which starts for these alloy at a temperature close to solvus γ’ 
minus 30-35°C. A γ’ solvus close to 1100°C was therefore 
researched for the final composition to guaranty a good 
workability over a large temperature range. These new criteria, 
added to the initial ones [1], explain the increase of Al content 
compared to Ni30 and the decrease of Ti and Nb contents 
compared to Ni33. The γ’ fraction of AD730 TM at 700°C was 
estimated by Thermo-Calc to be close to 37% and is 
intermediate between those of Ni30 (35%) and Ni33 (39%) [1]. 
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Figure 1: C&W superalloys costs calculated with raw material 
content (costs rationalized to 718’s) over a period of 4 years 

 

 
Figure 2: η phase stability in function of temperature and 

(Ti+Nb)/Al wt% ratio values according Thermo-Calc software 
for compositions in table 2. 

 

 Ni Fe Co Cr Mo W Al Ti Nb B C Zr (Ti+Nb)/Al 
wt%  

Presence 
of ηηηη-Eta 

Ni30 Base 5 9 15.2 3 2.5 2.0 3.5 1 0.01 0.015 0.03 2.25 No 
Ni50 Base 5.6 9.5 15.2 3 2.5 2.0 3.8 1.2 0.01 0.015 0.03 2.5 Yes + 
Ni40 Base 5 9 15.3 3 2.5 1.75 3.9 1.3 0.01 0.01 0.03 3 Yes ++ 
Ni33 Base 3.2 9.2 14.8 2.9 2.3 2.3 4 1.3 0.01 0.015 0.03 2.3 No 

AD730TM  Base 4 8.5 15.7 3.1 2.7 2.25 3.4 1.1 0.01 0.015 0.03 2 No 
Table 2 : Chemical analysis of AD730TM alloy compared to other C&W disk superalloys 

γ 

γ + γ’ 

γ + γ’+ η 

γ + η 

Ni30 
Ni33 Ni40 

(Ti+Nb)/Al ratio in wt% 

Ni50 AD730 

912



0

1

2

3

4

5

6

900 950 1000 1050 1100 1150 1200

Temperature (°C)

∆∆ ∆∆
(D

l/l
0)

/∆/∆ /∆/∆
T

 (
10

-6
 m

.°C
-1

)

1070°C

1120°C

1105°C

 
Figure 3: Correlation between γ’ starting precipitation temperature during cooling (γ’ cooling) and workability. a) Derivative cooling 

curves of dilatometric tests performed from 1160°C with a cooling rate equal to 5°C/min. b) Upsetting tests performed at 1160°C with a 
strain equal to 0.85 and a transfer time of 30 seconds (no coating). 

 
Experimental procedure  

 
A first ten tons VIM heat was melted in AD730TM. One ingot 
with a diameter equal to 500mm was vacuum arc remelted and 
then converted to obtain a billet with a diameter equal to 
200mm. The conversion was made with a 4500 tons press and a 
rotative forging machine above and below γ’ solvus. These 
billets did not present any cracks and any defects. These billets 
were used to forge full scale disk trials with various forging 
processes. Close-die forged and ring-rolled discs with an 
external diameter close to 600mm (figure 4) were forged below 
γ’ solvus in the 1050°C-1090°C temperature range. As shown on 
figure 5, microstructure was observed at different steps of the 
manufacturing process. As expected, η-Eta phase was only 
observed on VAR ingot in the interdendritical spaces where the 
Nb and Ti contents were the highest and was easily removed 
with a homogenization performed in the 1160°C-122 0°C 
temperature range. The ingot conversion process leads to a grain 
size on the billet close to ASTM 8 ALA 6. The grain size on 
forged discs was significantly finer and close to ASTM 12. 
Primary γ’ precipitates appeared at grain boundaries during 
subsolvus forging and were therefore observed on billets and 
discs. The primary γ’ distribution was more homogeneous on 
discs and is strongly linked with the amount of strain below γ’ 
solvus. The effect of solution heat treatment temperature and 
cooling rate after solution heat treatment were studied on billet 
with tensile and creep tests. Mechanical tests were then 
performed on discs heat-treated in the optimized conditions 
previously defined on billets.  
 

 
Figure 4 : Close-die forged disk (a) and ring-rolled + close-die 

forged disk (b) with external diameter of 600mm 

  

 
 

 
 

 
Figure 5 : AD730TM microstructure observed on a) VAR ingot 

b) 200mm diameter billet b) close-die forged disk 

Ni30  
γ’ solvus ≈ 1100°C 

γ’ cooling  ≈ 1070°C 

Ni33  
γ’ solvus ≈ 1130°C 
γ’ cooling ≈ 1105°C 

 

U720Li 
 γ’ solvus ≈ 1155°C 
γ’ cooling ≈ 1120°C 

 

a) b) 

a) 

c) 

b) 

a) b) 

ηηηη-Ni3(Ti,Nb) 
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Workability of AD730 TM   
 
Workability was evaluated at various steps of the process with 
preliminary laboratory tests and industrial tests in a second time. 
Workability of AD730TM was assessed in laboratory with tensile 
tests performed at high temperature and high strain rate. First 
tests were performed with samples taken into a slice of VAR 
ingot in order to check the workability before ingot conversion. 
These tests were performed after homogenization with a strain 
rate equal to 10-1 s-1 in the 1040°C-1220°C temperature range. 
As shown on figure 6, a comparison was established with 
U720Li and Waspaloy alloys tested in similar conditions in 
terms of strain rate and initial state (homogenized ingot). 
AD730TM workability evaluated on ingot is higher than those of 
U720Li and Waspaloy which can not be respectively forged in 
these conditions above and below γ’ solvus contrary to 
AD730TM. It is the reason why the grain size on Waspaloy 
billets is not very fine (conversion made at high temperature) 
and the forging process of U720Li billet is difficult (conversion 
made at low temperature). The ability to be forged either below 
or above γ’ solvus confers to AD730TM the opportunity to break 
the as-cast structure at high temperature above γ’ solvus  and to 
refine the microstructure by a reasonable amount of strain below 
γ’ solvus with a convenient forging process.  
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Figure 6 : Reduction of areas measured with tensile tests on 

ingot at different temperatures for various superalloys 
 

Same tests were performed on billets with a finer microstructure 
and at lower temperatures. In the same way, a comparison was 
made with other C&W disk superalloys (figure 7).  
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Figure 7 : Reduction of areas measured with tensile tests on 
forged billet at different temperatures for various superalloys 

These tests show that the workability on billets of AD730TM is 
between those of 718 and Waspaloy. These tests indicate 
actually that cracking is respectively possible on Waspaloy and 
AD730 below 980°C and 930°C. The behavior of AD730TM in 
terms of cracking sensitivity was evaluated to be intermediate 
between those of 718 and Waspaloy. These laboratory results 
were confirmed in industrial conditions with ring-rolling and 
close-die forging tests. As shown on figure 8, no cracks were 
observed during the manufacturing process of the discs 
presented on figure 4. The results confirm the good ability of 
AD730TM for the conventional C&W route. 
 

 
 

 

 
 

 
Figure 8: Intermediate steps to obtained discs with external 

diameter of 600mm on figure 4. Open die forging operations (a) 
and ring-rolling operations (b) before close die forging 

 
 

Effect of solution heat treatment  
 
The solution heat-treatment temperature was studied on small 
blanks with a section of 16x16 mm² taken at mid-radius of the 
200mm diameter billet. These blanks were solution heat-treated 
at 1060°C, 1070°C, 1080°C and 1120°C during four hours 
before being cooled in air. Air cooling on these blanks leads to a 
cooling rate close to 200°C.min-1 and approximates the cooling 
rate of oil quenched disks. The samples were then aged at 760°C 
during 16h. Tensile tests at 700°C and creep tests at 750°C 
under a stress of 450MPa were performed to evaluate the effect 
of solution heat treatment temperature (table 3). In the same 
way, cooling rate after solution heat treatment was studied with 
various cooling rates performed after a solution heat-treatment 
of four hours at 1080°C. Tensile tests at 700°C and creep tests at 
700°C under a stress of 690MPa were performed to evaluate the 
effect of this parameter (table 4). No effect of solution heat 
treatment temperature on grain size was observed except for the 
temperature of 1120°C which is above the γ’ solvus and 
logically leads to a larger grain size. Solution heat treatment 
temperature has a slight effect on the tensile strength if the 
temperature is lower than the gamma prime solvus (figure 9). 
Yield strength remains actually stable and close to 1100MPa at 
700°C. A supersolvus solution heat-treatment does not have any 
effect on UTS but rather on yield strength. The solution heat 
treatment temperature has a strong effect on creep life even if 
the solution heat-treatment temperature is below γ’ solvus and 
the grain size almost the same (figure 10).  

a) b) 
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A decrease of elongation for tensile and creep tests is observed 
for the supersolvus heat-treatment: this is probably due to the 
larger grain size and the absence of primary γ’ precipitates at 
grain boundaries (figure 11). 
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Figure 9: Effect of solution heat treatment temperature on tensile 

properties at 700°C 
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Figure 10: Effect of solution heat treatment temperature on creep 

properties at 750°C-450MPa 
 
As expected, cooling rate after solution heat-treatment has a 
strong effect on tensile and creep properties. A high cooling rate 
after solution heat-treatment promotes higher tensile strength 
and higher creep lives (figure 12-13). Inversely, high cooling 
rates decrease elongation for tensile and creep tests. SEM-FEG 
examinations were also performed to analyze the effect of 
solution heat treatment temperature and cooling rate on γ’ 
precipitation inside the grains (Figure 14). The sizes of 
secondary γ’ precipitates that have precipitated during cooling 
after solution heat-treatment were measured and are indicated in 
tables 3 and 4. An increase of solution heat-treatment 
temperature leads to larger secondary γ’ precipitates in relation 
with a precipitation during cooling which occurs at a higher 
temperature. A similar tendency was observed in U720Li [12] 
and can be easily checked with dilatometric tests. 

 
Figure 11: microstructure and grain size obtained after 

supersolvus heat treatment 1120°C/4h/200°C/min 
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Figure 12: Effect of cooling rate after solution heat-treatment on 

tensile properties at 700°C 
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Figure 13: Effect of cooling rate after solution heat-treatment on 

creep properties at 700°C-690MPa. 
 
 

 Tensile test at 700°C  Creep 750°C/450MPa 
Solution heat treatment Aging 

Grain 
size 

ASTM 

Secondary γ’ 
diameter (nm)  

UTS 
(MPa) 

YS 
(MPa) 

El 
(%) 

RA 
(%) 

 
Rupture 
time (h) 

El 
(%) 

RA 
(%) 

1060°C/4h/200°C/min 760°C/16h 8.5 40nm - 270nm  1237 1110 20.5 19  77 48 64 
1070°C/4h/200°C/min 760°C/16h 8.5 Not determined  1243 1108 21.5 20  113 26 60 
1080°C/4h/200°C/min 760°C/16h 8 50nm  1230 1110 17 18  184 32 43 
1120°C/4h/200°C/min 760°C/16h 3 60nm  1232 953 15 17  773 16 18 

Table 3 : effect of solution heat-treatment temperature on mechanical properties and microstructure 
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 Tensile test at 700°C  Creep 700°C/690MPa 
Solution heat treatment Aging 

Grain 
size 

ASTM 

Secondary γ’ 
diameter (nm)  

UTS 
(MPa) 

YS 
(MPa) 

El 
(%) 

RA 
(%) 

 
Rupture 
time (h) 

El 
(%) 

RA 
(%) 

1080°C/4h/200°C/min 760°C/16h 8.5 50nm  1230 1110 17 18  128 10 26 
1080°C/4h/120°C/min 760°C/16h 8.5 95nm  1163 1038 21 26  60 19 36 
1080°C/4h/70°C/min 760°C/16h 8.5 105nm  1147 989 30 31  49 22 42 
1080°C/4h/30°C/min 760°C/16h 8.5 110nm - 310nm  1109 959 29 39  31 18 53 

Table 4 : Effect of cooling rate after solution heat-treatment on mechanical properties and microstructure 
 

  
1060°C/4h/200°C/min + 760°C/16h/Air cooling 1120°C/4h/200°C/min + 760°C/16h/Air cooling 

  
1080°C/4h/200°C/min + 760°C/16h/Air cooling 1080°C/4h/120°C/min + 760°C/16h/Air cooling 

  
1080°C/4h/70°C/min + 760°C/16h/Air cooling 1080°C/4h/30°C/min + 760°C/16h/Air cooling 

Figure 14 : SEM-FEG examinations made after various heat-treatments listed in tables 3 and 4 
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Coarser secondary γ’ precipitates with a diameter close to 
270nm are observed only after a solution heat treatment 
performed at 1060°C. It strongly suggests that these precipitates 
are fully dissolved above this temperature. These precipitates 
can not be rigorously considered as secondary γ’ precipitates due 
to their presence before the cooling from solution heat treatment.  
A solution heat-treatment performed at 1060°C is not high 
enough to dissolve these secondary γ’ precipitates formed during 
the previous cooling from the forging temperature. It is well 
established [13-15] that increasing cooling rate in γ/γ’ 
superalloys leads to a decrease of the secondary γ’ diameter. A 
bimodal precipitation of secondary γ’ precipitates was observed 
for the lowest cooling rate and indicate that two precipitation 
waves occur during the cooling after solution heat treatment. As 
most of γ/γ’ superalloys for turbine disks, mechanical properties 
of AD730TM are very sensitive to the solution heat-treatment 
temperature and strongly depend on γ’ precipitates (secondary 
and tertiary) that have precipitated during the cooling after 
solution heat treatment (figure 15). The subsolvus solution heat-
treatment was defined to obtain γ’ dissolution as high as possible 
while controlling the grain size. Cooling rate after solution heat-
treatment has to be as fast as possible to get the highest tensile 
and creep properties. Quenching can be easily performed on 
AD730TM without any issues due to the moderate gamma prime 
content in the alloy (37%) and the fine grain size. It is the reason 
why oil or polymer quenching after solution heat-treatment in 
the 1070-1080°C temperature range was preferred to perform 
mechanical tests on forged disks. 
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Figure 15 : Effect of secondary γ’ precipitates diameter on the 

creep life and tensile yield strength 
 

Microstructural stability 
 
AD730TM was designed to have a high microstructural stability 
by controlling Md parameter and TCP phases amount [1]. 
Microstructural stability was assessed on billet after a long-term 
aging of 3000h at 750°C which is very heavy compared to 
previous studies made on superalloys [16-18]. The initial heat-
treatment before the long-term aging was 1080°C/4h/200°C/min 
+ 760°C/16h. Various mechanical tests were performed before 
and after this long-term aging (table 5). As shown on figure 16, 
no TCP phases were observed on AD730TM after 3000h at 
750°C. It explains that no embrittlement was observed after 
3000h at 750°C with charpy notch impact tests and with tensile 
tests. This long-term aging leads to a slight increase of γ’ 
secondary precipitates which explains the decrease of strength 
and creep life compared to the initial heat-treatment. This 
decrease of strength is reasonable (5-8%) and lower than those 
of other superalloys like 718Plus (13%), Waspaloy (14%) and 
U720Li (10-15%) in less severe conditions [17-19]. The size of 
secondary γ’ precipitates  was estimated to be close to 100nm 
after 3000h at 750°C (figure 16). It is interesting to notice that a 
similar γ’ size and a similar creep life at 700°C-690MPa were 
obtained with a lower cooling rate equal to 70°C.min-1 (table 4). 
The effect of long-term aging is therefore comparable to that of 
a slight decrease of cooling rate. It confirms that mechanical 
properties of AD730TM strongly depend on γ’ precipitates size 
and that the microstructural stability of AD730TM is very high. 
 

 
1080°C/4h/200°C/min 

760°C/16h 

1080°C/4h/200°C/min 
760°C/16h 

750°C/3000h 
Charpy notch 

impact (J) 
31J 30J 

UTS 1368 MPa 1257 MPa 
YS 1088 MPa 1024 MPa 
El 28% 40% 

Tensile 
650°C 

RA  28% 53% 
tr  128 h 55 h 
El 10% 19% 

Creep 
700°C 

690MPa RA 26% 38% 
Table 5: Mechanical properties after a long-term aging of 3000h  

at 750°C 
 

 

  
Figure 16: SEM-FEG examinations made after 1080°C/4h/200°C/min + 760°C/16h + 750°C/3000h 
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Mechanical properties on forged disk 
 
Close-die forged disk of AD730TM was heat-treated with this 
following sequence: 1070°C/4h/Oil quenching + 760°C/16h/Air. 
As shown in table 6, a comparison was made with C&W 
superalloys for turbine disks in similar conditions: tests were 
performed on forged parts with similar grain size (in the ASTM 
8-11 range) and similar cooling rate after solution heat-
treatment. 
 

 718 718Plus U720Li AD730TM 
SHT 975°C/1h 955°C/1h 1100°C/4h 1070°C/4h 

Quenching Oil Oil Oil Oil 

Aging 
720°C/8h 
620°C/8h 

788°C/8h 
704°C/8h 

760°C/16h 
650°C/24h 

760°C/16h 

Table 6 : Heat-treatment performed on forged disks of various 
C&W superalloys before mechanical tests 

 
Tensile tests were performed from room temperature to 700°C. 
The tensile strength of AD730TM is significantly higher than 
those of 718 and 718Plus for the entire tested temperature range, 
and slightly higher than those of U720Li above 650°C. At 
700°C, the yield strength of AD730TM is close to 1100MPa and 
100MPa higher than that of 718Plus. 
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Figure 17: Ultimate tensile strength versus temperature for 

various C&W superalloys 
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Figure 18: Yield strength versus temperature for various C&W 

superalloys 
 
The density of AD730TM was measured to be equal to 8.2 g.cm-3 
and is good agreement with previous results obtained on Ni30-
Ni33 [2]. 
 

Stress-rupture properties were determined in temperatures 
ranging from 650°C to 760°C under various stresses. Time to 
rupture was analyzed using a Larson–Miller approach 
commonly employed for disk alloys (figure 19). As can be 
noted, AD730TM alloy exhibited great improvement in creep 
resistance compared to 718Plus and at least as good properties 
as those of U720Li. As the cost of AD730TM is lower than that 
of U720Li and similar to that of 718Plus, we can consider that 
the combination between cost and mechanical properties of 
AD730TM is higher than those of current C&W superalloys. 
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Figure 19: Creep properties of various C&W superalloys 
 

Conclusions 
 
AD730TM was designed by Aubert & Duval to obtain similar 
properties to those obtained on previous work with Ni30 and 
Ni33. Only slight modifications were made on Ni30 and Ni33 
chemistries to improve the workability and to avoid any risk of 
η-Eta phase precipitation. The presence of iron and the control 
of expensive elements provide to AD730TM a lower cost than 
other C&W superalloys. The workability of AD730TM was 
evaluated to be higher than those of Waspaloy and U720Li. 
Contrary to these C&W superalloys, AD730TM can be easily 
forged below and above γ’ solvus. It is therefore possible to 
obtain a fine grain microstructure on the billet with a convenient 
forging process. Close-die forging discs and ring-rolling discs 
were forged without any issues and confirmed the good 
workability of AD730TM. As most of γ/γ’ superalloys for turbine 
disks, mechanical properties of AD730TM are very sensitive to 
the solution heat-treatment and strongly depend on secondary 
and tertiary γ’ precipitates. AD730TM presents a high 
microstructural stability. No TCP phases were observed after a 
long-term aging of 3000h at 750°C. This long-term aging leads 
to a slight increase of the secondary γ’ precipitates and a slight 
decrease of the strength. Finally, tensile and creep properties of 
AD730TM are significantly higher than those of 718Plus and 
slightly higher than those of U720Li. Based on these results, the 
highest combination between cost and properties of AD730TM 
was therefore confirmed. Further work is going to be made to 
optimize the aging sequence in regard of tensile, creep and 
FCGR properties. 
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