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Summary

In this paper we derive an asymptotic normality result for an adaptive trimmed

likelihood estimator of regression starting from initial high breakdownpoint robust

regression estimates. The approach leads to quickly and easily computed robust

and efficient estimates for regression. A highlight of the method is that it tends au-

tomatically in one algorithm to expose the outliers and give least squares estimates

with the outliers removed. The idea is to begin with a rapidly computed consis-

tent robust estimator such as the least median of squares (LMS) or least trimmed

squares (LTS) or for example the more recent MM estimators of Yohai. Such esti-

mators are now standard in statistics computing packages, for example as in SPLUS

or R. In addition to the asymptotics we provide data analyses supporting the new

adaptive approach. This approach appears to work well on a number of data sets

and is quicker than the related brute force adaptive regression approach described

in Clarke (2000). This current approach builds on the work of Bednarski and Clarke

(2002) which considered the asymptotics for the location estimator only.
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