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Abstract

A degree monotone path in a graph G is a path P such that the sequence
of degrees of the vertices in the order in which they appear on P is monotonic.
The length (number of vertices) of the longest degree monotone path in G

is denoted by mp(G). This parameter, inspired by the well-known Erdős-
Szekeres theorem, has been studied by the authors in two earlier papers.
Here we consider a saturation problem for the parameter mp(G). We call
G saturated if, for every edge e added to G, mp(G + e) > mp(G), and we
define h(n, k) to be the least possible number of edges in a saturated graph
G on n vertices with mp(G) < k, while mp(G+ e) ≥ k for every new edge e.

We obtain linear lower and upper bounds for h(n, k), we determine ex-
actly the values of h(n, k) for k = 3 and 4, and we present constructions of
saturated graphs.
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(2013) 1–15.
doi:10.1016/j.aim.2013.04.020
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