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Abstract 

In this paper, the actuator dead zone problem is solved for switched fuzzy systems. Our 
attention is concentrated on the construction of nonlinear-solving method for switched 
fuzzy systems with time delay. Based on non-fragile observer, by the utilization of PDC 
technique and single Lyapunov function, a switched fuzzy controller is designed, which 
can guarantee the system to be asymptotical stable with performance. Finally, a 
simulation study is presented to show effectiveness of the proposed theory. 
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1. Introduction 

Switching system is an important hybrid system consisting of a finite number of subsystems and a 

switching rule that represents the active subsystem at each moment. For the switching fuzzy system, 
the switching signal is divided into an arbitrary switching signal, a time related signal, and a state 

related switching signal. The average dwell time method was proposed in [1-3], and the state-
dependent switching signal method was proposed in [4, 5]. However, in some special cases, it needs 

to switch arbitrarily. We cannot use this method. Then a single Lyapunov function was proposed in 
the literature [6,7]. 

Research on switching fuzzy systems has attracted widespread attention, especially in switching T-S 

fuzzy systems. In the past few decades, the T-S fuzzy model has been developed as an effective tool 
for approximating the most complex nonlinear systems [8-13]. Therefore, the analysis and synthesis 

of the problem of switching T-S fuzzy systems is still a hot spot for some researchers. For example, 
the authors in [14] proposed a class of switching control design methods for nonlinear systems based 

on the switch Lyapunov function. The authors in [15] studied the exponential and asynchronous 
stability of a class of nonlinear systems based on the switch Lyapunov function. problem. However, 

the above literature does not include the dead zone nonlinear phenomenon. What attracts us is that 
the nonlinear system contains dead zones. In fact, dead zone characteristics are often encountered in 

various engineering systems, and the presence of dead zones often leads to degradation and instability 
of system performance. In [16-18], adaptive dead zone inversion was established for linear and 

nonlinear systems with unmeasurable dead zones. [19] studied the robust stabilization problem of 
switched fuzzy systems with actuator dead zones. However, the above control method does not 
consider the conditions in which the time lag and the state are not available.  

In practical applications, the observer gain may result in a change between the estimated state and the 
actual state. These undesired fluctuations can lead to degradation of the closed loop system. In [20], 

the stability effects of small fluctuations were discussed in depth, and non-fragile control methods 
were proposed to prevent this unfavorable behavior. In addition, in [21], the non-fragile control of a 
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class of uncertain systems was found. In [22], the non-fragile guaranteed cost fuzzy controller design 
of fuzzy systems was proposed. In [23], the uncertain Lur'e is proposed. etc. [24-29]. However, to the 

best of our knowledge, the design of non-fragile observers for switched fuzzy systems with time-
delay and actuator dead zones has not been studied. Therefore, research in this field should have 

important theoretical and practical significance. It should be pointed out that so far, the work done in 
switching fuzzy systems is still limited, which prompted us to carry out this work. 

This paper investigates the stability of switched fuzzy systems with time delay and actuator dead zone 

based on no-fragile observer, and considers the H
  performance. By using PDC design scheme and 

single Lyapunov function, a switched fuzzy control law is developed. The sufficient conditions of 

ensuring the switched fuzzy systems asymptotic stabilization are proposed in terms of LMIs, which 
can be solved very efficiently using the convex optimization techniques, it is proved that we can get 
the satisfying performance. 

2. System Description 

In this paper, we consider a class of fuzzy switched systems with time delay and actuator dead zone, 
which are described by the following model: 

Rule i

 : IF 
1z ( )t  is 

1

iF
, 

2z ( )t  is 
2

iF
,…, z ( )p t  is i

pF
 ,Then 

         

   
,

i d i i

i

x t x t x t d t t

y t C x t

   



        




                   (1) 

where 1,  2,  ...,  i N , z( )t  are the premise variables, and i

pF
 are the fuzzy sets, ( ) nx t   is the state 

vector; ( )t  is the bounded external disturbance, ( )y t  is the output of the system, ( )t  is the control 

input with actuator dead zone, which is defined as follows: 

( ) ,   if ( )

( ) 0,                if | ( ) |

( ) ,   if ( )

l l

l

l l

u t a u t a

t u t a

u t a u t a

 

 

 

 


 
  

                                (2) 

where ( )u t  is the input to dead zone, and 
la  is the breakpoint of the input nonlinearity. 

According to [19], we can represent the fuzzy switched fuzzy system as following: 

            

      

1

1

N

i i d i i

i

N

i i

i

x t h z t x t x t d t t

y t h z t C x t





    

 







          



 







                (3) 

where 

  
  

  
1

1 1

p i

j jj

i pN i

j ji j

F z t
h z t

F z t










 




 
, 

  0 1ih z t  ,   
1

1
N

ii
h z t




 ,   i

j jF z t  denotes the membership function where  jz t  belongs to the 

fuzzy sets i

jF . 

Lemma 1. Let m nF   and m n  be given. If    x t F , then   sat Fx t  can be represented as 

       
2

1

m

k k k

k

sat Fx t t E F E H x t 



   

  k t  for 1,2, 2mk   are some scalars which satisfy  0 1k t   and  
2

1
1

m

kk
t


 . 

Lemma 2. Given constant matrices X  and Y , for arbitrary 0  , the following inequality holds: 

1
X Y Y X X X Y Y



       
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3. Fuzzy Control Design 

In this section, we will design an observer and develop the sufficient condition of asymptotical 
stability for the switched fuzzy system with time delay and actuator dead zone. If the state in (3) are 

unavailable for feedback control design, we can establish an observer to estimate the unmeasured 
state. The following fuzzy switched observer is presented: 

Rule i

 : IF 
1z ( )t  is 

1

iF
, 

2z ( )t  is 
2

iF
, …, z ( )p t  is i

pF
, Then 

       

   

ˆ ˆ ˆ ˆ( )

ˆ ˆ

i d i i i

i

x t x t x t d t L y y

y t C x t

    




         




(4) 

where 
i i iL L L       is the ith  observer gain for the -th  switched fuzzy subsystem, and 

iL  

models the uncertain gain. 

Assumption 1: The ith  observer gain perturb 
iL  is a structured uncertainty. This is, there exist 

known constant matrices x yn n

iQ


 and x yn n

iR


  and unknown time-varying matrices  iF t

 such 

that 

 i i i iL Q F t R      

and    i iF t F t I 




 
for all t  and for all 1, ,i N . 

The same as (3), the fuzzy switched observer are inferred as follow: 

    

     

      

1

1

ˆ

ˆ ˆ ˆ( )

ˆ ˆ

N

i

i

i d i i i

N

i i

i

x t h z t

x t x t d t L y y

y t h z t C x t







    

 













          

 






                     (5) 

In this paper, we consider the switching signal is arbitrary, the switching signal   x̂ t  subjects to 

 
1       signal = 1  

0       signal =0

r

r

r

t


 


 

The overall fuzzy switched observer is inferred as follows: 

      

     

        

1 1

1 1

ˆ

ˆ ˆ ˆ( )

ˆ ˆ

r

r

Nl

r ri

r i

ri dri ri r ri

Nl

r ri ri

r i

x t t h z t

x t x t d t L y y

y t t h z t C x t





 



 







          

 






                    (6) 

According to [19], the dead zone is related to the saturation nonlinearity by: 

      r r rt u t sat u t                               (7) 

To realize the control objective, we will use the single Lyapunov function method here. Based on 
PDC scheme, we consider the switched fuzzy controller for the switched system 

      
1

ˆ
rN

r ri ri

i

u t h z t K x t


                            (8) 

Then, the closed-loop fuzzy switched system is represented as follows: 

             

       

           

1 1 1

1 1 1

ˆ ˆ

r r

r r

N Nl

r ri rj ri dri

r i j

ri rj rj

N Nl

r ri rj ri

r i j

x t t h z t h z t x t x t d

K x t sat K x t t

y t t h z t h z t C x t







  

  


     


       










                       (9) 
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and the switched fuzzy observer is written as follows: 

             

       

           

1 1 1

1 1 1

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

r r

r r

N Nl

r ri rj ri dri

r i j

ri rj rj ri rj

N Nl

r ri rj ri

r i j

x t t h z t h z t x t A x t d

B K x t sat K x t L C x t

y t t h z t h z t C x t





  



  


   


      










                  (10) 

The sufficient conditions on the asymptotical stability for system (9) are provided in the following 
theorem. 

Theorem 1. For the switched fuzzy system (9), if there exist symmetric positive matrices ,  ,  ,  e eP Q P Q  
with appropriate dimensions and  , , , , , 0rij rij rij ri ri ri       ,  , 1,  2,  ...,  ri j N such that 

2

0 0 0

0 0 0

0

0

rij dri

rij e dri e

e

PA

Q

I P A P

Q

I

 
 
  

     
 
    

      

                           (11) 

where 

1 2 1 1 1

1

rj rj

rij ri ri rj rj ri rj ri rj rj rj k ri

rj ri k rj rj k ri ri k rj

rij ri e ri rj rj ri e rij ri ri

rij ri e e ri rij e ri ri e rij rj

A P PA PB B P PB B P PB E B P

PB E B P PB E B P PB E B P Q

PP C C C C P P PQ Q P

A P P A PQ Q P C R

  

  

  

 

   

    

      

  

     

   

 

     ri ri rj e rij

rij rj ri ri rj ri rj ri ri ri rj

R C Q I

C R R C C C C C



  



   

 

  

 

Then for any switching signals, the switching controller 
 
(8) could guarantee the switched fuzzy 

system (9) is asymptotical stable with H
 performance. 

Proof. Choose a Lyapunov function as follows 

       1 2
ˆ + V t V x t V x t                         (12) 

where 

            

            

1

2

 

ˆ ˆ ˆ ˆ ˆ

t

e e
t d

t

t d

V x t x t P x t x t Q x t d t

V x t x t Px t x t Qx t d t

 



 



 

 




 

Then, we have 

              

   

         

           

2

1

1 1 1 1

1

m
r rN Nl

k r ri rj

k r i j

ri e e ri rij e ri e ri rij ri rj ri rj

rj ri e ri rj e e e

dri e e dri e

V x t t t h z t h z t x t

A P P A PQ PQ R C R C

C L P P L C Q x t t P x t x t P t

x t d A P x t x t P A x t d x t d Q x t d

 

 

 



   

 

   

   



   

    

      

 

             (13) 

and 

              

 

 
         

2

2

1 1 1 1

1 1

ˆ ˆ  

P P

ˆ ˆ

m
r r

k

k

N Nl

k r ri rj

k r i j

ri ri rj k rj rj ri ri

rj k rj rj rij ri rj rj ri rij ri ri

rij rij rj ri ri rj

V x t t t h z t h z t x t

A A K E K E H P P

K E K E H Q PL C C L P PQ Q P

x t x t x t x t C R R C x t x t

 

 

 



   


  

     

    



       


      

   

 

 

         ˆ ˆ ˆ ˆ ˆ
dri dri

d

Px t x t P x t d x t d Qx t d  



      

                 (14) 

Combining (13) and (14), one has 
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         

         

 

 

 

 

 

 

 

 

 

 

2

2

1 1 1 1

2

ˆ ˆ0 0 0

ˆ ˆ0 0 0

  

0

m
r rN Nl

k r ri rj

k r i j

rij dri

rij e dri e

e

V t x t x t t t

t t h z t h z t

x t x tPA

x t d x t dQ

x t x tI P A P

x t d x t dQ

t tI

  

 

 

 

   





  



    
    

      
       
    

        
            

                   (15) 

Then we obtain the system (9) is stable with H
 performance index for the given 2 , this completes 

the proof. 

From (11) in Theorem 1, the stability conditions for the switching fuzzy system are transformed into 
the following matrix inequality 

2

0 0 0

0 0 0

0

0

rij dri

rij e dri e

e

PA

Q

I P A P

Q

I

 
 
  

     
 
    

      

                           (16) 

Note that matrix inequalities (16) are not LMI, To obtain positive definite matrix ,  ,  ,  e eP Q P Q , 

andcontrol gain matrix 
riK , the observer gain matrix 

riL  and matrix 
riH . 

For the convenience of design, define (16) as 

2

0 0 0

0 0 0
0

0
0

0

0

rij dri

rij e dri e

e

PA

Q
M

I P A P
N

Q

I

 
 
    

        
   
    

     

                     (17) 

with 

2

,   0

rij e dri e

rij dri

e

I P A P
PA

M N Q
Q

I

  
   

             

 

Let 0M   and 0N  . By the Schur complements, 0N   is equivalent to the following LMI 

 
1

2

  0 0

rij e dri e

e

rij ri ri

I P A P

Q

I Q Q 


 

 
  
   
 
    
 

                       (18) 

where  
1

rij ri e e ri rij rj ri ri rj e rij

rij rj ri ri rj ri rj ri ri ri rj

A P P A C R R C Q I

C R R C C C C C

 

  

  

   

     

  
 

Pre- and post-multiplying both side of M  by the matrix {   }diag X X , let 1,  X P Y XQX  , then we have 

0
rij driA X

Y

 
 

  
                              (19) 

where 

1 2 1 1 1

rj rj
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The matrices X  and Y  can be obtained by solving the LMIs, by substituting P  and 
eP  into 

1, ,ri ri ri ri ri ri ri ri e riK B P H B P L P C                               (20) 

we can easily obtain ,  ri riK H  and 
riL . 

4. Simulation Study 

In this section, an example is presented to show the effectiveness of the proposed technique. 

Consider a stirred tank reactor, whose reaction form takes place from a  to b  (a  is a reaction species 

and b  is a product species). The real application requires switching between two inlet streams 

consisting of the species a at flow rate 
1 2,  F F , concentrations 

1 2,  a aC C , and temperatures 
1 2,  a aT T , 

respectively. Therefore, the process can be modeled by 

 
 

        
     

 
 

          
   

/

/

3
t t E RT t

a a a aa t

t tE RT t

aa t

F F
C t C t C t C t d ke C t

V V

F tH
T t T t T t ke C t

V c cV

 



 





 





    


   

 

where  aC t  denotes the concentration; 
 t

F


 denotes the flow rate a ,  T t  denotes the temperature.  

Take 0.1V  , 10 11.2 10k s  , 48.314 10 /E kJ mol  , 44.78 10 /H kJ mol    , 0.0239 /c kJ kgK , 
31000.0 /kg m  . In addition, 

 a as t
C C


  is 30.06 /kmol m , when  

30.006 /a as t
C C kmol m


  , system 1 is 

activated, when  
30.006 /a as t

C C kmol m


  , system 2 is activated. Then, the system described as follows: 

Subsystem 1: 

       

 

       
   

1000010

1000012

0.334 1.2 10

1.002 0.26386

0.334 2.4 10 117.7684
2.39

T t

a a a

a

tT t

a

C t C t e C t

C t d

t
T t T t e C t








   

  

       

where 3 3

1 1 10.0334 / , 352.6 , 0.79 /aF m s T K C kmol m   . 

Subsystem 2: 

       

 

       
   

1000010

1000012
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T t

a a a

a

tT t

a

C t C t e C t

C t d

t
T t T t e C t








   

  

       

where 3 3

2 2 20.0167 / , 310.0 , 1.0 /aF m s T K C kmol m   . 

The control objective is to stabilize the reactor at reactor at the unstable equilibrium point 

   
1

, 0.57,395.3a sC T   and    
2

, 0.738,509.12a sC T   using the rate of heat input    t
t


  and change in inlet 

concentration of species a . 

Define fuzzy system of state vector is  

               1 2  x    a as t s t
x t t C t C t T t T t

 


        

, 

and the system of control input is            t t s t
u t t t
  

   , where            
31 /

a t a t a t s
C t C t C t kmol m

  
    , 

   | | 1 /
t

u t kJ h


 , and     0 /
s t

t kJ h


  . 

We can obtain 

11 12

21 22

551.7944 361.0006 656.2956 429.3685
,   L

43.2492 26.3885 51.4399 31.3861

441.6490 49.6059 686.3645 77.0923
,     L

34.6161 3.7307 53.7967 5.7979

L

L

   
    
   
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and 

11 12

21 22

0 0 0 0
,   

0.1755 0.4518 0.1755 0.4518

0 0 0 0
,   

0.1755 0.4518 0.1755 0.4518

K K

K K

   
    

    

   
    

    

 

The initial condition is chosen as  0.12  0.15  0  0
 , 0.4d  . Then the simulation results are shown in Figs. 

1-6, where Figs. 1 and 2 show the trajectories of  1,2ix i   and their estimates  ˆ 1,2ix i  , Fig. 3 

presents the trajectories of  1,2ix i  , Fig. 4 and 5 show the trajectories of  2 =1,2iu i , Fig. 6 shows the 

trajectory of switching signal. From the simulation results, it is clear that the fuzzy feedback control 
law can guarantee the stability of the fuzzy switched system with time delay and actuator dead zone. 

 

Fig. 1 The trajectories of 
1x  (solid line) and 

1x̂  (dotted line) 

 

Fig. 2 The trajectories of 2x  (solid line) and 2x̂  (dotted line) 

 

Fig. 3 The trajectories of 2x  (solid line) and 1x  (dotted line) 
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Fig. 4 The trajectory of 
12u  

 

Fig. 5. The trajectory of 
22u  

 
Fig. 6 The trajectory of switching signal 

5. Conclusion 

In this paper, the switched fuzzy control design problem has been investigated for a class of switched 

fuzzy systems with time delay and actuator dead zone. By using PDC design method, a non-fragile 
switched state observer is designed to obtain the estimations of the unmeasured states. And we have 

considered H
 performance, which improves anti-interference ability of the system. Moreover, the 

sufficient conditions for ensuring the asymptotic stability of switched fuzzy system have been derived 

and formulated in the form of LMIs. It has been proved that the proposed control approach can 
guarantee that the whole closed-loop system is asymptotically stable by using the single Lyapunov 

function method. A real application example was given to illustrate the effectiveness of the proposed 
control method. In fact, the main approaches utilized in this work can be extended to switched 
stochastic systems with time-varying delay, which could be our future work. 
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