透過您的圖書館登入
IP:13.58.247.31
  • 學位論文

機械化學穩定都市垃圾焚化飛灰製備調濕陶瓷綠建材之研究

A Study on the Sintering of High Performance Humidity Control Ceramic of Green Building Material by the Mechanochemical Stabilized MSWI Fly Ash

指導教授 : 高思懷

摘要


垃圾焚化飛灰目前多採用固化掩埋,基於資源循環原則應朝高價值回收利用。本團隊曾以廢玻璃、反應灰、高嶺土三種摻配料成功燒結出一級與二級調濕陶瓷材料。另以廢玻璃、坡縷石(Palygorskite)、鍋爐灰燒結出二級調濕陶瓷材料,並發現以坡縷石做為摻配料可以增加燒結體之吸濕能力。然而前述研究成果之吸濕能力皆有待改善。 焚化飛灰樣品採自台灣中部某大型都市垃圾焚化廠之反應灰。第一階段實驗反應灰係以液固比5水洗,並經液固比9濕式研磨前處理以去除溶解性鹽類並穩定重金屬,再摻配廢玻璃、高嶺土混和壓製生胚,改變燒結溫度;第二階段實驗,反應灰經水洗後,添加適量坡縷石共同研磨,並以坡縷石取代高嶺土做為生坯製作摻配料。燒結體性質分析包括抗彎強度、吸放濕能力、SEM、XRD,以及重金屬穩定的效果。 研究結果共有六種不同條件之燒結體符合第三級吸放濕標準以及面磚陶瓷CNS規範之抗彎強度標準。其中以廢玻璃:穩定灰:高嶺土:坡縷石為6:1:3:0之坯體於900℃燒結後得到最佳之放濕率79.4%及抗彎強度22.3 MPa;廢玻璃:穩定灰:高嶺土:坡縷石為6:2:0:2之坯體於950℃燒結後擁有最佳之吸濕能力162.3 g/m2。燒結體之毒性溶出試驗(TCLP) 除了總Cr遠低於有害廢棄物認定標準以外,其餘重金屬皆低於偵測極限。SEM結果顯示放濕率最佳之燒結體發生高溫熔融,表面顆粒變為平順,較小之孔隙被覆蓋;吸濕量最佳之燒結體表面孔洞極多,凹凸不平。XRD分析發現燒結體產生新結晶,如透輝石(Diopside,CaMg(SiO3)2)、石英(Quartz,SiO2),及Al/Fe/ PO4之化合物Al0.67Fe0.33(PO4)等。

並列摘要


Most of the municipal solid waste incinerator(MSWI) fly ash are solidified followed by landfilling currently, based on the tendency of resource recirculation, it should be studied to recover for high value products. MSWI fly ash has been studied successfully to blend with waste glass and kaolinite, as the feedstock of humidity adjustment ceramic material sintering. While MSWI boiler ash used to be blended with waste glass and palygorskite during the study of humidity-controlling ceramic sintering, and found that addition of palygorskite can increase the moisture absorption capacity of the product. Fly ash (reaction product of semi-dry APCD) was sampled from a MSWI in central Taiwan. In the first stage experiment, the fly ash samples were pretreated by washing with liquid/solid ratio 5, followed by wet ball milling with liquid/solid ratio 9, in order to remove soluble salts and stabilize the heavy metals; then blended with waste cullet powder and kaolinite in different ratio to press in a mold, followed by sintered at different temperature in the furnace. In the second stage, washed ash samples were milled with proper amount of activated palygorskite to enhance the effect of heavy metals stabilization; In the molding step, kaolinite was replaced by palygorskite to enhance the characteristics of humidity-controlling ceramic. The results showed six conditions of the ceramic were in line with the level three of humidity-controlling standard and the bending strength standard of tile in CNS. The best humidity desorption rate (79.4%) sample reveled the best bending strength 22.3 MPa at sintering temperature 900℃, with the combination of waste glass:stabilized ash:kaolinite =6 : 1 : 3. Nevertheless, the best humidity adsorption capacity (162.3 g/m2) reveled at sintering temperature 950℃ with waste glass:stabilized ash:palygorskite =6 : 2:2. Total Cr leaching in the TCLP tests were far below the hazardous waste standard for all of the 6 samples, while other heavy metals were all below the detection limit. SEM analysis showed that the higher temperature melted the particles to from smooth surface of the ceramic, which induced better humidity desorption rate; on the contrary, the sample with better moisture absorption is porously and the surface is rough. XRD analysis revealed that after wet milling process and sintered at high temperature, new stable crystals such as Diopside (CaMg(SiO3)2), Quartz (SiO2) and Al0.67Fe0.33(PO4) appeared.

參考文獻


劉瓊玲,2005,都市垃圾焚化反應灰穩定燒結再利用技術之研發,淡江大學水資源及環境工程學系碩士班學位論文。
吳靜薇,2013,機械化學處理焚化飛灰對鉛穩定機制及製備陶瓷材料之研究,淡江大學水資源及環境工程學系博士班學位論文。
屈耿立,2014,低碳鋼爐渣脫硫能力之熱力學計算研究,臺北科技大學材料及資源工程系研究所學位論文。
徐志緯,2013,都市垃圾焚化飛灰製備調濕材料之技術研究,淡江大學水資源及環境工程學系碩士班學位論文。
李明國,2010,研磨的機械化學作用促進焚化飛灰重金屬穩定化及燒結資源化之研究。

延伸閱讀