透過您的圖書館登入
IP:18.188.66.13
  • 學位論文

微型產氫裝置之熱場分析

A Study of Heat Field in Micro Hydrogen Supplier

指導教授 : 潘欽

摘要


本研究針對重組式甲醇燃料電池 (RMFC) 之前端氫氣來源設計一微熱交換型產氫裝置 (micro heat exchange-type hydrogen supplier, MHEHS),並對此產氫裝置以原位測量概念進行熱場研究。利用微機電技術 (MEMS) 將微型熱交換器 (MCHE) 與微型觸媒重組器 (MCR) 進行整合成長寬各為2 cm、厚度僅2.13 mm之微型產氫裝置。 將25℃常溫液態甲醇與氧氣混合進入產氫裝置,經過上層熱交換器與高溫產物發生熱交換和透過POM (Partial Oxidation of Methanol) 放熱反應產生之餘熱使其達到重組器工作溫度且利用高速攝影機進行流譜觀測確定液態甲醇進入重組器前完全乾化以防其毒化觸媒。當反應物達工作溫度進入下層甲醇重組器進行重組反應,本實驗利用紅外線測溫儀量測甲醇重組器觀測窗溫度分布和其變化情形進行熱場分析且其為非接觸式測量方法能最真實反應當時熱場情況。最後將利用氣相層析儀分析產物組成比例。 本研究針對不同液態甲醇與氧氣流量比例和加熱功率進行深入甲醇重組器之熱場分析與現象討論。並以原位測量概念發展一產氫裝置熱場分析之檢測方式。當固定氧氣比例改動甲醇流量和加熱功率,發現在加熱功率為22.5 W時,甲醇流量為0.25 sccm因高流量擁有較高氫氣產率為2.97×10-5 mole/s和較高熱效益達70.2%;而甲醇流量為0.04 sccm時則因重組器反應溫度較均勻擁有較高氫氣選擇率達77.3%,其中一氧化碳產率和選擇率則不管變化加熱功率或甲醇流量都維持低產量將有利於未來與燃料電池進行整合之目標。

並列摘要


Abstract This study integrates successfully that a micro heat exchange-type hydrogen supplier (MHEHS) as a fuel supply source for a micro reforming methanol fuel cell (RMFC). The MHEHS is with dimension of 2 cm (L) × 2 cm (W) × 0.2 cm (T) and is composed of a micro-channel heat exchanger (MCHE, 2nd layer) and a micro channel reformer (MCR, 4th layer) by a micro machinery techniques. The present study focuses on the thermal field, especially the temperature distribution in the MCR Liquid methanol (25℃) is mixed with oxygen and flowed through the front side of the MCHE. Evaporation of liquid methanol in the micro-channel is warrant through an external heat input and the generated from a partial oxidation of methanol (POM) in the MCR. The dynamic temperature distribution in the MCR during methanol reforming reacting is observed using a non-contact infrared thermometer (IR). The hot spots and the evolution of hot region can thus be cleanly visualized. The product composition after the POM is collected and analyzed by a gas chromatography (GC). The effect of methanol flow rate, oxygen flow rate and heating power on the dynamic temperature distribution of the MCR and on the performance of the MHEHS are investigated. The results shows that when the VO2= 10 sccm,VMeOH= 0.25 sccm, and qpower= 22.5 W, the hydrogen production rate is the highest of 2.97×10-5 mole/s and thermal efficiency is 70.2 %. On the other hand, when the VO2 and qpowerkeep the same, while VMeOH is reduced to the stoichiometric value of 0.04 sccm, the hydrogen selectivity is the highest of 77.3 %. The yield rate and selectivity of carbon monoxide remains very low or zero in any Oxygen flowrate over 8 sccm.

參考文獻


[3] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel Cell Fundamentals,” John Wiley & Sons, Inc..
[5] D.E. Park, T.Kim, S.Kwon, C.K. Kim, E.Yoon,” Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells,” Sensors and Actuators A, Vol.135,pp.58–66,2007.
[6] O. Kwon, D.H. Yoon, J.J. Kim, “Silicon-based miniaturized reformer with methanol catalytic burner,” Chemical Engineering Journal, Vol. 140, pp. 466–472, 2008.
[7] T. Kim, “Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell,” international journal of hydrogen energy, Vol. 34, pp. 6790 – 6798, 2009.
[8] K.F. Lo and S.C. Wong, “A passively-fed methanol steam reformer with catalytic combustor heater,” international journal of hydrogen energy, Vol. 36, pp.10719-10726, 2011.

延伸閱讀