透過您的圖書館登入
IP:18.118.200.136
  • 學位論文

歷史影像數值地形模型建置暨1951年瑞穗斷層同震位移分析

Digital Terrain Model Construction based on Historical Aerial Photography, and its Application for the 1951 Ruei-Suie Earthquake Deformation Estimation

指導教授 : 張國楨

摘要


1951年花東縱谷系列地震,從10月22日開始地震接連不斷地發生,餘震沿著縱谷由北段之花蓮向南遷移至台東池上一帶,而在瑞穗地區造成了一系列地表破裂。鍾令和(2003)將地表破裂分為三段:瑞穗段、玉里段、池上段,其中瑞穗段的最大垂直位移量接近2公尺。但有關瑞穗斷層的相關研究,多著墨在1951年地震的描述、近斷層之活動特徵以及小範圍的地殼形變研究,對於整個瑞穗斷層沿線地區與1951年地震斷層所造成的地表位移量並沒有詳細地探討。 近年來由於科技的進步,使得航空遙測技術和應用與日俱增,特別是隨著時間演變之各時期的航空影像,廣泛地被運用在不同時間尺度的時空變化。台灣最早的航空照片可以追溯至1940年代由美軍所拍攝的影像,由於時代久遠且多數航拍資訊的遺失,著實增加使用的困難度。本研究運用地震前後1940年代美軍與1960年代空軍聯勤所拍攝的航空影像,配合即時動態全球定位系統實地測量地面控制點,運用近年來發展十分成熟之數位航空測繪軟體推算航照中之空中三角測量,以求得航拍當時之飛航資訊與位態。配合高精度之空載光逹產製之數值高程模型,進行各時期之影像正射與鑲崁。最後,運用次像素匹配的原理及特徵點位的量測,將各時期正射後的影像分別計算進而產生之相對位移量。 本研究對各時期的DTM做比對,發現2008年5M_DEM官方資料精度高出一倍,整體效果也較佳。歷史航照建置DTM的成果優劣關鍵取決於影像的品質,其中影像清晰度最為重要。1951年地震前後期影像因年代過於久遠,影像上的地形地貌變化過大,導致網格中次像素匹配不易,造成軟體計算上的困難間接影響成果。透過特徵點量測瑞穗斷層上下盤的位移,發現斷層上盤朝西與西北方向移動,平均位移量為3.66公尺,其中最大位移量為5.77公尺。

並列摘要


A sequence of earthquakes, from October 22 to December 5 in 1951, occurred from Hualien to Taitung of Longitudinal Valley. There was a serials of surface rupture caused by the earthquakes around Ruei-Suie area. Chung(2003) demonstrate that 1951 rupture may separate to three segments, Ruei-Suie,Yuli and Chihshang segment. The maximum displacement of Ruei-Suie segment about 2 meters. Most of the studies are focus on the description in 1951 earthquake, to characteristics of near-fault activity and deformation, however the surface rupture of 1951 earthquake did not discuss in details. By the advancing technology in recent years, the serials of the remote-sensing images taken in different periods have been wildly applied for multi-displine, especially for surface and environmental change analysis. The earliest aerial photographs were taken by the U.S. Air force during the 1940s in Taiwan. Nevertheless, because of absent of aerial information, difficult to acquire and image damages, it’s difficult to achieve and for application. In this study, the aerial images were taken by the U.S. Air force and TW Air force during 1940-1960. The Real Time Kinematic GPS equipment has been used accordingly to measure the ground reference points to calculating the exterior orientation parameters of each image. The photos is thus been orthorectified by means of the Airborne LiDAR data. Finally, the 1951 Ruei-Suie earthquake deformation is analyzed by means of Particle Image Velocimetry (PIV) sub-pixel matching technique and feature point measurements base on the orthorectified images. The results shows 2008’s DTM is better than 5M_DEM official data. The most important of DTM construction based on historical aerial photography is the definition of image. It’s difficult to calculate the coseismic displacement by PIV sub-pixel matching technique, because of the topography has been change a lot. By the feature points, it indicates Ruei-Suie fault show a left-lateral reverse fault, and the average displacement is 3.66 m , the maximum displacement is 5.77 m.

參考文獻


9. 楊智凱,高精度數值地形模型建置及其在活動構造地貌分析之運用,碩士論文,國立台北科技大學土木防災研究所,台北,2010,共97頁。
10. 莊育侃,運用歷史航照與日治地形圖資料探討花蓮地區之地形變遷,碩士論文,國立台北科技大學土木防災研究所,台北,2010,共114頁。
21. 范成楝、廖泫銘、林士哲,整合影像資料庫於Google Earth 之應用,地圖,第16期,2006,第109-120頁。
22. 沈淑敏、張瑞津,圖像資料在台灣地區地形變遷研究上的應用與限制,師大地理研究報告,第38期,2003,第67~86頁。
3. P.Redweil, D.Roque, A.Marques, R.Matildes, F,Marques," Recovering Portugal Aerial Images Repository",Carsten Jurgens(Ed.),2009,pp298-310.

被引用紀錄


張翊晨(2013)。應用遙感探測與野外現地測量初探 花蓮光復地區地表變形〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00160

延伸閱讀