透過您的圖書館登入
IP:18.226.251.22
  • 學位論文

光觸媒鎳金屬濾網對空氣中甲醛及總揮發性有機物之淨化效能評估

Evaluation of the foamed nickle photocatalyst filters on the efficiency of HCHO and TVOC removal

指導教授 : 曾昭衡

摘要


本研究第一部分利用以鎳金屬作為基材之濾網鑲嵌氧化鋅觸媒,裝設於配備紫外光 (365 nm) 燈之空氣清淨機中,分別於空氣品質測試艙和實場中進行空氣污染物去除率測試及空氣污染物濃度檢測。空氣品質測試艙利用可控制環境條件設定不同相對濕度 (高相對濕度:70 ± 5 %、低相對濕度:40 ± 5 %) 及空氣污染物之初始濃度 (HCHO:0.5 ± 0.05 ppm、1.0 ± 0.1 ppm;TVOC:1.4 ± 0.1 ppm;3.0 ± 0.3 ppm) 進行空氣污染物去除率測試,將測試結果與二氧化鈦鎳金屬濾網在皆有開啟紫外光燈且相同環境條件下之去除率進行比較,並選擇去除率較高之光觸媒鎳金屬濾網安裝於實場之空調型空氣清淨機中,檢測空氣污染物 (HCHO、TVOC) 在開啟此空調型空氣清淨機前後之污染物濃度變化,並將空氣品質測試艙之實驗參數條件代入質量平衡模式 (mass balance) 及氣流分析軟體 (CONTAM),模擬預測實場使用光觸媒鎳金屬濾網之空氣清淨機時,污染物濃度隨時間之變化。預測結果利用平均絕對百分誤差 (Mean Absolute Percentage Error, MAPE) 方法驗證其模擬方程式之可行性。 測試艙HCHO、TVOC之60分鐘測試結果,在三種環境條件下 (低濃低濕、高濃高濕、低濃高濕),氧化鋅鎳金濾網HCHO去除率結果,三種環境條件皆在未開啟紫外光燈照射濾網時去除率最高 (低濃低濕為7.88 %、高濃高濕為12.67 %、低濃高濕為11.45 %); TVOC去除率之結果,三種環境條件皆在開啟紫外光燈照射濾網時去除率最高 (低濃低濕為6.87 %、高濃高濕為15.75 %、低濃高濕為8.09 %),且不論是否有開啟紫外光燈,氧化鋅鎳金濾網在高相對濕度及高初始濃度時,對HCHO及TVOC之去除率最佳 (HCHO為12.67 %、TVOC為15.75 %),而濃度與濕度未顯著影響本實驗使用之紫外光燈對HCHO及TVOC之去除率 (HCHO為4.25~5.89 %、TVOC為3.33~5.11 %)。 空氣清淨機效能之CADR值均與去除率測試結果相符:空氣污染物去除率高則CADR值也越高。將上述測試結果與二氧化鈦鎳金屬濾網在相同環境條件下之去除率進行比較,結果為開啟紫外光燈照射濾網時,二氧化鈦鎳金屬濾網對HCHO及TVOC之去除率皆大於氧化鋅鎳金屬濾網。 第二部分將二氧化鈦鎳金屬濾網安裝於某實場之空調型空氣清淨機測試,以質量平衡模式及氣流分析軟體CONTAM模擬實場中HCHO及TVOC之 20分鐘濃度變化, HCHO之MAPE值結果為預測準確度可接受之範圍 (13.52 % ~ 38.80 %),TVOC多數皆在預測準確度優良之範圍 (8.28 %∼50.81 %);以氣流分析軟體CONTAM模擬預測污染物之濃度結果顯示,HCHO (5.38 %) 及 TVOC (7.07 %) 預測準確度皆為佳。實場之污染物去除效能推估結果為HCHO去除量為0.09 ppm/day;TVOC去除量為0.44 ppm/day。

並列摘要


In this study, the foamed nickel photocatalyst filters coated with zinc oxide (ZnO) and ultraviolet (UV) light of 365 nm are equipped in the air cleaners. Air pollutants removal efficiency of the air cleaners are assessed in a closed chamber and the real sites. In the closed chamber, relative humidity (RH) is set at 70 ± 5 % as high RH and 40 ± 5 % as low RH; initial concentrations (IC) of formaldehyde (HCHO) are 0.5 ± 0.05 ppm as low IC and 1.0 ± 0.1 ppm as high IC; initial concentrations of total volatile organic compounds (TVOC) are 1.4 ± 0.1 ppm as low IC and 3.0 ± 0.3 ppm as high IC. Moreover, the removal efficiency in the air cleaner equipped with foamed nickel photocatalyst filters coated with titanium dioxide (TiO2) are assessed at the same conditions under UV light and are compared with that coated with ZnO. Furthermore, the nickel filters with higher removal efficiency are installed in the real sites and the indoor air quality are assessed. Finally, the environmental parameters of the chamber test are input to the mass balance model and airflow analysis software (CONTAM) to simulate the change of pollutant concentration with time at the real site. The mass balance model is validated by mean absolute percentage error (MAPE). Results of the 60-min chamber test for the ZnO filters show the highest removal efficiency for HCHO are under no UV light irradiation (7.88 % for low IC at low RH; 12.6 % for high IC at high RH; 11.45 % for low IC at high RH), while that for TVOC are under UV light irradiation (6.87 % for low IC at low RH; 15.75 % for high IC at high RH; 8.09 % for low IC at high RH). It also shows no matter under UV light irradiation or not, the highest removal efficiency for HCHO and TVOC are under high RH and IC. The removal efficiency of HCHO and TVOC by UV light are not significantly affected by IC and RH (4.25~5.89 % for HCHO and 3.33~5.11 % for TVOC). Clean air delivery rates (CADR) of the air cleaner are consistent with the air pollutant removal efficiency, i.e., higher CADR brings higher removal efficiency. The results show the removal efficiency of HCHO and TVOC by TiO2 photocatalyst filters are higher than which by ZnO photocatalyst filters under UV light irradiation. On the field test, air conditioners equipped with TiO2 photocatalyst filters were installed at the site. The MAPEs of the simulations are 13.52 % ~ 38.80 % for changes of HCHO concentrations in 20 min with mass balance model and airflow analysis software CONTAM, while the MAPEs the simulations are 8.28 %∼50.81 % for changes of TVOC concentrations. The MAPEs of HCHO and TVOC for CONTAM simulations are 5.38 % and 7.07 % , respectively, which shows the CONTAM has good accuracy. The removal efficiency of HCHO and TVOC were 0.09 ppm/day and 0.44 ppm/day, respectively.

參考文獻


[1] 行政院環境保護署,室內空氣品質建議值,2005。
[2] 郭廷威,黃正中,健康綠建築的空氣污染商機室內空氣品質法規及改善技術驗證標準,中華水電冷凍空調月刊,2008。
[10] 麥成瑋,中醫醫療院所室內空氣品質改善研究,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2008。
[13] 陳育琳,使用二氧化鈦鎳金屬濾網之空氣淨化設備效能評估,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2011。
[42] C. Amornpon and T. K. O. Nguyen, “Catalytic Oxidation of VOC over n-ZnO

被引用紀錄


劉紹淵(2013)。室內空氣品質專家診斷系統-建構最佳化改善措施評估工具〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00308

延伸閱讀