透過您的圖書館登入
IP:18.191.84.229
  • 學位論文

碳化鎢含量與燒結製程對銅基碳化鎢複合材料之熱性質影響

Effects of WC and Sintering Processes on Thermal Properties of Cu-WC Composites

指導教授 : 陳貞光

摘要


近年來高階電子產品功能日新月異,以及綠能產業如LED與油電共生引擎系統的蓬勃發展,隨之而來的產品散熱問題逐漸備受矚目,除了既有的散熱模組設計開發,如水冷系統、熱管以及運用於高功率產品的均溫板外,散熱材之熱性質改善亦日趨重視,現階段常見提升材料熱傳導率與降低熱膨脹係數方式,採用薄膜處理製程(如DLC)、陶瓷散熱基板(如AlN、Al2O3)以及金屬基複合材料(如CuW、AlSiC)等。本篇以金屬基複合材料為主軸進行實驗研究,利用銅的優異電、熱傳導性質為基材,採用高能量行星式球磨機,添加不同含量碳化鎢,分別採含氫還原氣氛、熱壓與熱均壓等三種方式進行銅基碳化鎢複合材料燒結,並觀察其表面硬度、熱膨脹係數、導電度以及熱傳導率變化。由實驗結果得知,由於銅與碳化鎢間潤濕性不佳,使其採還原氣氛燒結後在銅基材與碳化鎢顆粒介面間存在微裂與孔洞,而在熱壓燒結時則有胚體內氣體不易釋出導致微裂痕的產生,致使此二燒結法皆無法獲得高緻密度之燒胚。反觀熱均壓燒結樣品經二階段燒結與熱均壓過程中的壓力作用下,可獲得99.5%以上之理論密度。隨著碳化鎢含量由0%提高到15%,該複合材料之導電度、熱膨脹率由本實驗燒結銅103.7 %IACS、18.3x10-6/℃降至60.2%IACS與12.9x10-6/℃,而熱傳導係數則由燒結銅360.3W/m•K降為263.3W/m•K、硬度則因碳化鎢強化由50.6Hv上升為83.4Hv。銅-碳化鎢複合材之性質除因碳化鎢含量提升,亦隨其緻密度不同而產生變化。

並列摘要


Thermal management has received much attention with increasing complexity of modern electronics and the development in green energy products such as LEDs and gasoline-electric hybrid engines. Besides the existing thermal modules , e.g. water cooling, heat pipes, and vapor chambers for high power electronics products, bulk metal matrix materials that bear excellent thermal properties are also increasingly important. The current research uses copper as matrix. Different contents of tungsten carbide are milled together with copper using high energy planetary ball mill. The mixtures are sintered through three different processes: sintering under reducing atmosphere, vacuum hot press, and hot isostatic pressing. Effects of tungsten carbides and manufacturing processes on the hardness, coefficients of thermal expansion (CTE), electric conductivity, and thermal conductivity are discussed. Result shows that copper and tungsten carbide barely wet each other. Density over 99.5% of theoretical value can only be achieved through hot isostatic pressing. When tungsten carbide content increases from 0% to 15%, both the electrical conductivity and CTE value of composite decreases drastically from 103.7%IACS and 18.3x10-6/℃ of sintered copper to 60.2%IACS and 12.9x10-6/℃, respectively. Thermal conductivity then decreases from 360.3W/m•K to 263.3W/m•K. On the other hand, the hardness increases from 50.6Hv to 83.4Hv as expected. Both tungsten carbide content and degrees of densification are shown to affect the properties of Cu-WC composites.

並列關鍵字

Thermal Conductivity CTE MMCs WC Hot press HIP

參考文獻


[2]王聖傑,純銅霧化與銅基複合材料之製程及熱性質探討,碩士論文,國立成功大學材料科學與工程學系,台南,2006。
[5]F.E. Kennedy, A.C. Balbahadur, and D.S. Lashmore, "The friction and wear of Cu-based silicon carbide particulate metal matrix composites for break application", Wear , 203-204, 1997, pp.715-721.
[6]B.K. Prasad, "Dry Sliding Wear Response of Some Bearing Alloys as Influenced by the Nature of Microconstituents and Sliding Conditions", Metallurgical and Materials Transactions A, vol. 28A, 1997, pp.809-815.
[7]K. Yoshida and H. Morigami, "Thermal properties of diamond/copper composite material", Microelectronics Reliability, vol. 44, 2004, pp.303-308.
[8]I.A. Ibrahim, F.A. Mohamed and E.J. Lavernia, "Particulate reinforced metal matrix composite-A review", J. Materials Science, vol. 26, 1991, pp.1137-1156.

被引用紀錄


周哲佑(2010)。銅基-碳化鎢之複合電鍍研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2010.00268

延伸閱讀