透過您的圖書館登入
IP:18.191.186.72
  • 學位論文

高科技廠房空調系統節能策略之研究

Strategy study on energy-saving for cleanroom air-conditioning systems of High–Tech Fabrication Plants (FABs)

指導教授 : 胡石政

摘要


本研究以一座典型的200 mm晶圓廠為標的物,以循環空調箱系統(AHU)、外氣空調箱 / 循環空調箱系統(MAU / RCU)、外氣空調箱 / 循環空調箱系統 / 乾式冷風機 (MAU / RCU / FDCU)、外氣空調箱 / 軸流風機/ 高效過濾器(MAU / Axial fan / HEPA / DCC)以及外氣空調箱 / 風機過濾器 / 冷卻乾盤管系統(MAU / FFU / DCC)等五種不同的空調系統設計組合,各別進行動態運轉的比較與分析。結果顯示外氣空調箱 / 風機過濾器 / 冷卻乾盤管系統的組合最具節能效果,而外氣空調箱 / 軸流風機/ 高效過濾器的組合其節能效果則略遜前者,而以循環空調箱系統整體耗能最顯著。「外氣空調箱 / 軸流風機/ 高效過濾器」較「外氣空調箱 / 風機過濾器 / 冷卻乾盤管系統」耗能偏高的主要原因為噪音防治系統的高壓降所造成。潔淨室空調若採用具有旁通能力的循環空調箱,相較於未採用旁通能力的空調箱,可節省超過50%的耗能,但旁通風門安裝的位置將限制空調系統的節能表現。 外氣空調箱對於冷卻除濕或預熱加濕所需之能量,約佔去高科技廠房空調系統30%至65%的耗能,以達到潔淨室所需之要求。由於這些高耗能的需求將造成高科技產品生產成本的增加,因此降低或尋找其它替代製冷源或產熱源將提供節約能源的絕佳機會。因此本研究也將針對半導體製造廠潔淨空調系統之外氣空調箱,在各種適當的空調設備排列方式下的節能效果進行探討。本研究明確地針對各種不同的因素,如風機安裝位置、冰水供應溫度(單/雙溫度冰水)、再熱方式(熱水鍋爐或採熱回收冰水機)進行探討,結果顯示「雙溫度冰水、熱回收冰水機供應熱水」的抽風式外氣空調箱最具節能效果;本研究也針對熱回收方式(如遞回式盤管、熱管或從乾盤管冷卻水的回水端)以及「連續冷卻」方式),及冬季預熱加溼(包括濕媒體、直接水霧、蒸汽及二流體方式)進行分析,結果顯示外氣空調箱自「從乾盤管冷卻水的回水端」回收能量,以及在冬季以「濕媒體」方式加濕可達最佳的節能效果。 高科技廠房的一般排氣系統內含相當大量的能量,由於相對外氣溫度為低(或高),可作為外氣空調箱冷卻以及預熱的用途。過去類似的研究大多著眼於「排氣系統能量回收比例」;換言之,這些研究大多基於「熱力學第一定律」的觀點,而乎略了能量轉換的「品質」。在本研究中將導入「熱力學第二定律」的觀念,針對外氣空調箱用於回收能量的熱交換器,在「固定尺寸」、「固定入口溫度」以及「入口質量流率」的條件下之最佳設計。結果顯示以「熱力學第二定律」方式,可推導出適當的熱交換器設計參數。本研究之成果並且與遞迴式盤管熱回收系統進行比較,結果顯示本研究成果其整體能量回收性能較遞迴式盤管設計為佳。根據本研究之成果顯示,外氣空調箱裝置經最佳化設計的熱回收裝置,夏季可節省5%的能量,而冬季可節省12%的能量。

並列摘要


The unique system dynamics of five different HVAC designs including the AHU (recirculation air unit) system, the MAU (make-up air unit) / RCU system, the MAU / RCU / FDCU (Dry fan coil unit) system, the MAU / axial fan system, and the MAU / FFU (fan-filter unit) system for a typical 200 mm DRAM wafer fabrication plant are discussed and compared. The MAU / FFU system reveals the most efficient in energy performances. The MAU / axial fan system exhibits slight less efficient in energy performance, compared with the MAU / FFU system. The most influential factor on energy performance between these two systems is the design of the noise abatement system, especially the pressure drop of the silencer, which dominates almost half of the internal static pressure of axial fan. Bypassing a certain portion of fab return air to mix with make-up air can maximally reduce 50% of energy consumption of the AHU system. However, it is limited by location bypass damper installation The energy requirements to cool, dehumidify, preheat, and/or humidify outdoor air are significant in the make-up air unit (MAU) of clean room air-conditioning systems, and can represent 30% to 65% of the total thermal energy required to maintain a clean room environment. Because of these high-energy requirements, cost-effective means to reduce energy costs can influence unit production costs. Reducing or displacing mechanical cooling or electrical heating requirements can achieve the greatest opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the MAU system by properly arranging compositions of components of a typical MAU applied in a semiconductor cleanroom. Explicitly, we investigated the influence of various factors including the fan location (draft-through type vs. push-through type), chilled water system (single chilled water temperature system vs. two chilled water temperature system), and reheating scheme (electrical heating vs. hot water provides by heat recovery chiller). The result shows that the draw-through type accompanied by two chilled water temperature system with heat-recovery function exhibits the lowest electrical power consumption. This study also aims to heat recovery methods i.e. run-around coil, heat pipe and dry cooling coil (DCC) water return, and cascade cooling, and reheating/humidification schemes including wet media, direct water atomized, steam and two phase flow. The result shows that the energy recovery by DCC water return method performs best energy utilization. Wet media scheme is the best humidification scheme in winter time. General exhaust system of clean room for Hi-tech FABs contains great deal of energy, and it can be utilized for make-up air handling unit (MAUs) for pre-cooling and pre-heating use since its temperature is lower (or higher) relative to the atmosphere. In the past, the most of similar studies focus on “percentage of transform” from exhaust system. That is, these researches are all based on first law of thermodynamics analysis and only consider in “Quantity”. However, these studies can not reflect the “Quality” of energy to be transformed. In this study, we use concept of secondary law of thermodynamics analysis to optimize a design of compact heat exchanger install inside MAUs based on specified outline dimension, fixed inlet temperature and mass flow rate for hot side and cold side. Result indicate a “appropriate” compact heat exchanger can be sized based on secondary law of thermodynamics analysis within minimum entropy production (or irreversibility) for cause by temperature difference and pressure drop both. In comparison with the most widely use “Run-around coil “ heat recovery system, the compact heat exchanger via optimization based on this study performs higher heat recovery efficiency than “Run-around coil “ heat recovery system. Beside, the optimized compact heat exchanger in this study can save 5% of energy for pre-cooling and 12% energy for pre-heating for MAUs

參考文獻


[9] 胡石政、陳明坤,「半導體無塵室節約能源之可行方法」,中國冷凍空調雜誌,第35 期,1997,第88~93頁。
[10] 李錦文,「半導體廠房潔淨室的節能空調設計之探討」,中國冷凍空調雜誌,第40 期,1998,第61~69頁。
[11] 王文伯、傅定儀、羅明廉,「半導體製造廠能源利用之查核與分析」,中國冷凍空調雜誌,第40 期,1998,第92~97頁。
[15] Hu, S. C, Chuah Y. K. and Huang S. C., “Performance comparison of axial fan and fan-filter unit type clean rooms by CFD”. ASHRAE Trans., 2002
[25] 曾鵬樟,「潔淨室除溼空調箱省能探討」,中國冷凍空調雜誌,第35 期,1997,第70~82頁。

被引用紀錄


吳子平(2014)。進氣系統與管路並聯之數值模擬〔碩士論文,國立交通大學〕。華藝線上圖書館。https://doi.org/10.6842/NCTU.2014.00369
鄭鼎耀(2010)。潔淨室之節能策略評估〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1308201016323600
鄭淙翾(2011)。高科技廠房全年能源消耗計算與軟體開發〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0108201117160900
陳嬿如(2011)。電子廠外氣空調箱冰水盤管設計及熱交換之評價研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1301201109133100
陳文漢(2011)。展示與驗證成功應用於潔淨室之控制方法〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1008201109503700

延伸閱讀