透過您的圖書館登入
IP:3.144.187.55
  • 學位論文

界面活性劑與六氰金屬錯合物和黃素腺嘌呤二核苷酸修飾電極的製備、性質與生物分子的電催化之研究

Preparation and electrocatalytic properties of hexacyanometalate and flavin adenine dinucleotide surfactant composite modified electrodes for biomolecules.

指導教授 : 陳生明

摘要


本研究主要分為三部分來討論,第一部分為DDAB(didodecyldimethylamm- onium bromide)薄膜修飾電極使用電化學方法同時對多巴胺與抗壞血酸之研究。使用循環伏安法製備界面活性劑DDAB修飾薄膜,同時測定各種的神經傳導物質和抗壞血酸混合物質已經很普遍了。DDAB修飾薄膜帶有正電荷,且於中性溶液加入神經傳導物質(多巴胺、正腎上腺素和腎上腺素)則是帶有正電荷,而抗壞血酸則是帶負電荷。使用循環伏安法及方波伏安法來研究神經傳導物質藉由DDAB修飾薄膜於pH=6.5磷酸鹽溶液中。我們可以清楚看出DDAB修飾薄膜明顯的分開多巴胺和抗壞血酸的循環伏安波峰。抗壞血酸的氧化電位移動到更正的電位是由於DDAB修飾薄膜電極有一個正電催化活性;而當多巴胺、正腎上腺素和腎上腺素被氧化在一個更正的電位是由於一個負電催化活性。當多巴胺與抗壞血酸混合時,則抗壞血酸和被氧化的dopamine-quinone (DOQ)之間有化學交互作用。利用旋轉環-碟電極伏安法來研究多巴胺及抗壞血酸的氧化還原機制。DDAB修飾薄膜電極已能成功地藉由伏安訊號分析以上所提及的物質。 第二部分為比較複合六氰金屬錯合物在DDAB與PDDA(Poly(diallyldimethy- lammonium Chloride)修飾電極以及硫氧離子的電催化性質之研究。藉由Fe(CN)63- 和Ru(CN)64-溶液,赤血鹽與釕赤血鹽薄膜可以直接沉積在界面活性劑DDAB修飾電極上。Fe(CN)63-/DDAB與Ru(CN)64-/DDAB 薄膜穩定且具有不同pH效應。使用電化學石英晶體微天平與循環伏安法來研究 Fe(CN)63-/DDAB 與 Ru(CN)64- /DDAB薄膜生長情形。於相同pH下,Fe(CN)63-/DDAB與Ru(CN)64-/DDAB薄膜的形式電位都往負的偏移;而Fe(CN)63-/PDDA 和Ru(CN)64-/PDDA則並無明顯的電位偏移。探討出赤血鹽/DDAB與釕赤血鹽/DDAB薄膜的製備與電化學性質,且其兩對氧化還原對的形式電位證明具有質子效應。而複合薄膜對SO32-具有電催化氧化效果,對SO52-則具有電催化還原效果。複合薄膜也使用旋轉環-碟電極來研究其電化學反應。 第三部分為黃素腺嘌呤二核苷酸和複合六氰金屬錯合物在DDAB與PDDA修飾電極電催化性質之研究。於緩衝溶液中,黃素腺嘌呤二核苷酸(FAD)可以直接沉積在界面活性劑DDAB(didodecyldimethylammonium bromide)修飾電極上。FAD/DDAB 薄膜穩定且於不同pH溶液下具有明顯的電化學活性。使用電化學石英晶體微天平與循環伏安法來研究FAD/DDAB 薄膜生長情形。FAD/DDAB 薄膜對S2O42-具有電催化氧化活性,而對O2、H2O2、S2O82-、SO52-、NO2- 和L-cystine具有電催化還原活性。FAD/ Fe(CN)63-/ Ru(CN)64-/DDAB複合薄膜的製備,由溶液中FAD、Fe(CN)63- 和Ru(CN)64-直接沉積在介面活性劑DDAB薄膜修飾電極。FAD/ Fe(CN)63-/ Ru(CN)64-/PDDA複合薄膜,也能直接沉積在介面活性劑PDDA薄膜修飾電極。FAD/DDAB、Fe(CN)63-/DDAB和 Ru(CN)64-/DDAB薄膜的形式電位比FAD/PDDA、Fe(CN)63-/PDDA和 Ru(CN)64-/PDDA薄膜均更往負的方向移動。 FAD/ Fe(CN)63-/ Ru(CN)64-/DDAB複合薄膜也對O2和S2O82-具有電催化還原活性,對SO32-則具有電催化氧化活性。

關鍵字

DDAB PDDA FAD 薄膜修飾電極 多巴胺 抗壞血酸 電催化 EQCM

並列摘要


Part 1. A voltammetric method using a surfactant didodecyldimethylammonium bromide (DDAB) film-modified electrode was developed for simultaneous measurement of various combinations of neurotransmitters and ascorbic acid. The DDAB-modified film had the positive charge and neurotransmitters(dopamine, norepinephrine, and epinephrine) existed as the positively-charged species in the neutral solution whereas AA (ascorbic acid) as a negatively-charged one. Both the cyclic voltammetry (CV) and square wave voltammetry were used for the measurement of neurotransmitters by means of the DDAB/GC-modified electrode in phosphate buffer solution of pH=6.5. Well-separated voltammetric peaks were observed for dopamine and ascorbic acid at the DDAB/GC- modified electrodes. The oxidation potential of ascorbic acid was shifted to a more positive potential due to a positive electrocatalytic activity of the DDAB/GC-modified electrode while dopamine or norepinephrine, and epinephrine were oxidized at a more positive potential due to a negative electrocatalytic activity. A chemical interaction between ascorbic acid and the oxidized dopamine-quinone (DOQ) was observed when dopamine and ascorbic acid were observed. The RRDE (rotating ring disk electrode) method was applied to study the redox reaction mechanism of dopamine and ascorbic acid. The DDAB/GC electrode resolved the voltammetric signals of the above analytes successfully. Part 2. Electrochemically active hexacyanoferrate and hexacyanoruthenate films can be directly deposited on a surfactant DDAB(didodecyldimethylammonium bromide) modified electrodes from Fe(CN)63- and Ru(CN)63- aqueous solutions. The deposited Fe(CN)63-/DDAB, Ru(CN)63-/DDAB films are stable, and show obvious electrochemical activity in aqueous solutions with various pH. An electrochemical quartz crystal microbalance and cyclic voltammetry were used to study the in situ growth of the Fe(CN)63-/DDAB and Ru(CN)64-/DDAB films films, respectively. The formal potential of Fe(CN)63-/DDAB and Ru(CN)64-/DDAB both were shifted to a more negative potential, but Fe(CN)63-/PDDA and Ru(CN)64-/PDDA (Poly(diallyldimethylammonium Chloride) films both show unobviously shift. When compare with Fe(CN)63- and Ru(CN)64- in the same pH aqueous solutions, respectively. The preparation and electrochemical properties of composite hexacyanoferrate/DDAB and hexacyanoruthenate/DDAB films were determined, and their two redox couples showed formal potentials that demonstrated a proton effect, respectively. Electrocatalytic oxidation of SO32- and electrocatalytic reduction of SO52- on hybrid films were also investigated. The electrochemical reaction of the composite film was investigated using the rotating ring-disk electrode method. Part 3. Flavin adenine dinucleotide (FAD) can be directly deposited on a surfactant DDAB(didodecyldimethylammonium bromide) modified electrodes from aqueous solutions. The deposited FAD/DDAB films are stable, and show obvious electrochemical activity in aqueous solutions with various pH. An electrochemical quartz crystal microbalance and cyclic voltammetry were used to study the in situ growth of the FAD/DDAB film. Electrocatalytic oxidation of S2O42- and electrocatalytic reduction of O2, H2O2, S2O82-, SO52-, NO2- and L-cystine on FAD/DDAB films were also investigated. Composite film of FAD, hexacyanoferrate and hexacyanoruthenate films can be directly deposited on DDAB(didodecyldimethylammonium bromide) modified electrodes from FAD, Fe(CN)63- and Ru(CN)63- mixture aqueous solutions. The deposited Composite film of FAD, hexacyanoferrate and hexacyanoruthenate films can be deposited on PDDA (Poly(diallyldimethylammonium Chloride) modified electrodes. The formal potential of FAD/DDAB, Fe(CN)63-/DDAB and Ru(CN)64-/DDAB all were shifted to a more negative potential than FAD/PDDA, Fe(CN)63-/PDDA and Ru(CN)64-/PDDA films. Electrocatalytic reduction of O2 and S2O82- and electrocatalytic oxidation of SO32- on the FAD/Fe(CN)63-/Ru(CN)64-/PDDA hybrid films were also investigated.

並列關鍵字

DDAB PDDA FAD Film modified electrode dopamine ascorbic acid Electrocatalysis EQCM.

參考文獻


[3] R. F. Lane, A. T. Hubbard, J. Phys. Chem., 77 (1973) 1401.
[4] C. R. Martin; Rhoades, T. A., Ferguson and J. A. Anal. Chem., 54 (1982) 1639.
[5] C. S. Cha, J. Chen, P. F. Liu, Electroanal. Chem., 345(1993) 463.
“Micelles, vesicles and micro-emulsions”
[8] J. N. Israelachvili, S. Marcelja and R. G. Horn, “Physical principles of membrane organization”, Q. Rev. Biophys., 13(1980)121.

延伸閱讀