透過您的圖書館登入
IP:3.133.149.168
  • 學位論文

奈米壓印化合物半導體鰭式結構及元件之研製

Fabrication and Characterization of Compound Semiconductor Fin Structure and Devices via Nanoimprint

指導教授 : 李明逵

摘要


矽金氧半場效電晶體(MOSFET)尺寸已微縮至奈米範圍,在未來幾年內即將達到極限值。但微縮後之短通道效應成為一重要課題,以三閘鰭式金氧半場效電晶體(Tri-gate FinFET)之閘極三面環繞通道電晶體結構,可有效減緩短通道效應,以增進元件可靠度,量子侷限效應減少聲子散射而提升載子遷移率。此外,使用高介電係數材料作為閘極介電層,更可以提高驅動電流。目前為使電晶體操作速度更快,具高電子遷移率三五族化合物半導體材料作為電晶體通道來製作高效能MOSFET。 本研究利用奈米壓印微影技術(Nanoimprint lithography),製作出線寬為56奈米之化合物半導體奈米線。隨後研究硫化銨((NH4)2S)水溶液對三五族半導體進行表面硫化處理,可以有效去除原生氧化層以及填補半導體表面懸鍵,大幅改善界面品質,使其能障不再受費米能階釘札(Fermi level pinning)的影響。同時為了改善閘極氧化鈦薄膜的品質,研究利用原子層沉積系統(ALD)生長氧化鈦與氧化鋁之雙層結構,並可藉由氧化鋁自我清潔能力改善養化層與基板之介面,其漏電流分別降至電場分別為7.31X10-7,3.11X 10-6 與7.40X10-7 A/cm2 at ±2.0MV/cm。

並列摘要


Si MOSFET has been scaled down to nanometer to achieve high speed operation and high device density. However, the short-channel effects are important issues that can be released by tri-gate FinFET. Moreover, the quantum confinement effect can reduce the phonon scattering and hence enhance the carrier mobility. With high dielectric constant gate oxides, the gate control capability can be further improved. In order to develop even higher speed devices, III-V compound MOSFET has attracted much attention from higher electron mobility compared with that of Si. In this study, using the nanoimprint lithography to fabricated III-V compound nanowire has been well investigated. Moreover the surface passivation of III-V with (NH4)2S treatment could prevent it from oxidizing after cleaning for improve the interface properties and Fermi level pinning. We made of improvement quality for existing titanium oxides, using double stack of titanium oxide (TiO2) and aluminum oxide (Al2O3) by ALD. ALD has self-cleaning property which could improve interface quality between oxide and substrate, the leakage current densities are 7.31X10-7, 3.11X 10-6 and 7.40X10-7 A/cm2 at ±2.0MV/cm, respectively.

參考文獻


[2] Moore, Gordon. "The Future of Integrated Electronics." Fairchild Semiconductor internal publication (1964).
[4] Ravi Pillarisetty, “Academic and industry research progress in germanium nanodevices”, Nature 479, 324–328 (2011).
[5] Anurag Chaudhry, "Controlling Short-channel Effects in Deep Submicron SOI MOSFETs for Improved Reliability: A Review", IEEE Trans. on Device and Materials Reliability, Vol.4, pp.99-109, (2004).
[7] Simon M. Sze, “Physics of Semiconductor Devices 3rd Edition”, ISBN-13: 978-0471143239.
[8] The Semiconductor Industry Association. 2011 International technology roadmap for semiconductors. Austin, TX: International SEMATECH.

延伸閱讀