透過您的圖書館登入
IP:18.227.13.249
  • 學位論文

高溫固定床中石灰吸附氯化氫之反應動力學研究

A Study on HCl Adsorbed by CaO in a Fixed-Bed Reactor at High Temperature.

指導教授 : 錢建嵩

摘要


中 文 摘 要 焚燒含氯物質過程中,如:都市垃圾焚化爐、廢棄物衍生燃料(Refuse Derived Fuel, RDF)鍋爐,所產生的氯化氫,對設備具有腐蝕現象。由於氯化氫的強氧化性,對於焚化爐、燃燒爐或鍋爐等設備,皆無法避免氯化氫的腐蝕,為了解爐內高溫去除氯化氫,本研究設計一高溫去除氯化氫之實驗。鈣基吸附劑常用於焚化系統中,藉以去除煙氣中的酸性氣體,如:氯化氫、二氧化硫等。本研究於小型固定床反應器中操作,探討氧化鈣與氯化氫的反應行為,並以未反應縮核模型分析實驗所得之實驗數據,由此方法計算氧化鈣與氯化氫於各溫度下之反應速率常數。反應溫度範圍是600-800℃,且本試驗選用三種粒徑之吸附劑,分別為163、385及545μm。突破曲線為固定床反應器的重要指標之ㄧ,由突破曲線可了解吸附劑的利用率及質傳區域的大小。依本次實驗結果得知,當溫度為650℃時,吸附劑的利用率及質傳區域最高。 由未反應縮核模型判斷其反應在皆為化學及擴散反應共同控制。於高溫時,產物層的結構較為鬆散、多孔,其反應起初由化學反應控制,經過一段時間後,產物層逐漸形成,反應變為化學及擴散反應共同控制。氣-固化學反應速率不僅與反應溫度的有關,亦受吸附劑粒子的種類、結構與床內床質孔隙度影響。本研究利用阿瑞尼士法則(Arrhenius’ Law)分析反應速率常數獲得氧化鈣與氯化氫表面化學反應活化能分別為6.84、5.00及4.37(kJ/mol)。結合先前學者及本研究之實驗數據,氧化鈣與氯化氫之反應為一兩步驟串聯反應。高溫時(≧650℃),反應機制控制步驟為氧化鈣與氯化氫反應生成中間產物,氫氧氯化鈣(CaClOH);反之,低溫時(<650℃),反應機制控制步驟為氫氧氯化鈣與氯化氫反應生成氯化鈣。 本研究發現於固定床反應器中,增加床高,可使得氣體於床區內的滯留時間增加,確實能增加去除氯化氫的效果,但若應用在流體化床燃燒爐中,還需針對床高所造成氣泡的變化等現象多加探討。 碳酸鈣於高溫環境下(≧700℃)吸收氯化氫的效果與氧化鈣相似,因在高溫環境下,碳酸鈣會快速的分解成氧化鈣,並在分解過程中會釋放CO2,使得碳酸鈣顆粒變得較多孔隙的結構,可增加其吸附效果,研究結果顯示活化能為21.32kJ/mol。

關鍵字

石灰 石灰石 氧化鈣 高溫 碳酸鈣 動力學 縮核模型 氯化氫

並列摘要


Abstract Production of hydrogen chloride (HCl) in an incineration or combustion process, such as municipal solid waste (MSW) incinerator and RDF boiler shows an appearance of the apparatus being corroded. Due to the strong oxidation of HCl, the apparatus of an incinerator, combustor or boiler cannot avoid the corrosion by HCl. An experiment of removing HCl in high temperature was designed for the purpose to become more familiar with the process of removing HCl in situ furnace at high temperature. Ca-Based sorbents are commonly used in an incineration process to remove acid gases from flue gas such as HCl and sulfur dioxide (SO2). The purpose of this present study is to investigate the initial reaction behaviors of calcium oxide (CaO) and HCl. The experiments were carried out in a bench scale fixed-bed reactor and the experimental data were analyzed by unreacted shrinking-core model to calculate the reaction rate constants at each temperature. The tested reaction temperatures were operated in a range of 600-800℃ in this study. The average sorbent diameters were 163, 385 and 545 μm, respectively. Breakthrough curve is an important index in fixed bed reactor. The utilization of sorbent and width of mass transfer zone can be understood from the breakthrough curve. By the results of this experiment, there was the most utilization and narrowest mass transfer zone before breakthrough time at 650℃. Scanning electron microscope (SEM) analyses showed that the rare-limiting step for the reaction altered with the extent of solid conversion in sequence at temperature exceeding 600℃: chemical reaction control, and simultaneous chemical reaction and product layer diffusion control for a long period of time. The experimental results were analyzed by using the unreacted shrinking core model. At high temperature, the product layer is loose and porous. The reaction rate does not only relate to temperature, it is also affected by the type and structure of sorbent and bed porosity. The activation energy of the CaO and HCl surface reaction are 6.84, 5.00 and 4.37 (kJ/mol) for 163,385 and 545μm sorbents was obtained from the analysis of the reaction rate constants in Arrhenius' law in this present. Combining the data of this present and previously, the reaction between CaO and HCl is a two steps mechanism in series. The controlling mechanism step is that CaO reacts with HCl to produce the mediate, calcium hydrochloride (CaClOH), at high temperature (>=650℃); on the other hand, CaClOH reacts with HCl to produce CaCl2 at low temperature (<650℃). The experimental result show that the conversion of CaO to CaCl2 increases with bed high. The effect of CaCO3 removing HCl is the same between CaO and HCl at high temperature. The calcination of CaCO3 took place under high temperature condition simultaneously with the reaction of CaCO3 and HCl. The activation energy of the CaCO3 and HCl surface reaction is 21.32 kJ/mol.

參考文獻


王朝正、游天進,”316不鏽鋼於600及900℃含氯氣氛之高溫氯化腐蝕環境機構”,防蝕工程,第8卷第2期66-79(1994)。
羅國肇,《廢棄物衍生燃料氣化之合成燃氣中HCl氣體之去除研究》,中原大學化學工程研究所碩士論文(2002)。
鍾子超,《高溫固定床中石灰吸附無水氯化氫反應動力學控制研究》,中原大學化學工程研究所碩士論文(2009)。
Bie, R., S. Li and L. Yang, “Reaction Mechanism of CaO with HCl in Incineration of Wastewater in Fluidized Bed,” Chem. Eng. Sci., 60, 609-616 (2005).
Caixiang Z., Y. Wang, Z. Yang, M. Xu, “Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Discorea zingiberensis,” Fuel, 85(14-15), 2034-2040 (2006).

被引用紀錄


林耿民(2011)。高溫固定床中探討二氧化碳對氧化鈣與氯化氫之反應性研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2011.00174

延伸閱讀