透過您的圖書館登入
IP:3.145.178.240
  • 期刊

空載光達正高化算探討:以高屏地區為例

Orthometric Height Reduction in Airborne Lidar Operation, a Study with Kao-Hsiung and Ping-Tung Area

摘要


空載光達進行測量作業時,以GPS為定位工具,故通常所得點雲之參考坐標系統為WGS84系統,其高程為橢球高。產製正高系統之數值高程模型過程中,需利用大地起伏模式將橢球高改算為正高,提供民生使用。本研究使用內政部高屏地區空載光達地形測量之數據,並以一檢核路線視為真值,檢核空載光達所獲得之點雲橢球高誤差,DEM部分之標準差為0.172公尺。再以本研究進行當時之國內五個大地起伏數值模式進行正高化算,分析化算成果,比較檢核五模式。比較結果,若以Hw2001為參考,以Hw2005成果較為接近,標準差為0.174公尺,Hw2003為0.199公尺。此一成果顯示,其主要誤差成分為空載光達誤差,但是由於缺乏實測正高,具體差異尚難確實估算。

並列摘要


In the general process, GPS is used for the positioning in the airborne lidar operation. Therefore, most frequently the height obtained is referenced to WGS84 ellipsoid and the measurements are in ellipsoidal height. In order to produce the digital elevation model in the orthometric height, the geoid undulation correction should be performed. This paper investigates the differences of five currently available digital geoid models of Taiwan area as applied to the airborne lidar point cloud obtained for the Kao-Hsiung and Ping-Tung area. Based on the differences between the result from the elevation obtained in the field and the elevation interpolated from the Lidar point clouds, the ellipsoid height are examined. The standard deviation for the ellipsoid heights is 0.172m. Then, the orthometric height differences among those obtained from different models are compared. The standard deviation for Hwang-2005 is 0.174m, and 0.199m for Hwang-2001. Due to the lack of directly observed orthometric heights, the real error in terms of orthometric height is still difficult to confirm.

被引用紀錄


曾名辰(2012)。莫拉克颱風後之地貌指標變化分析-以南台灣流域為例〔碩士論文,長榮大學〕。華藝線上圖書館。https://doi.org/10.6833/CJCU.2012.00175
張郁翎(2017)。以Google Street View影像進行地面動態載台衛星可視性分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201702032
莊佳頤(2013)。地面動態載台GNSS相對定位品質評估〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.00582

延伸閱讀