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Background: The 12-lead electrocardiogram (ECG) is the gold-standard ECG method used by cardiologists. However,

accurate electrode placement is difficult and time consuming, and can lead to incorrect interpretation.

Objectives: The objective of this study was to accurately reconstruct a full 12-lead ECG from a reduced lead set.

Methods: Five-electrode placement was used to generate leads I, II, III, aVL, aVR, aVF and V2. These seven leads

served as inputs to the focus time-delay neural network (FTDNN) which derived the remaining five precordial leads

(V1, V3-V6). An online archived medical database containing 549 cases of ECG recordings was used to train, validate

and test the FTDNN.

Results: After removing outliers, the reconstructed leads exhibited correlation values of between 0.8609 and

0.9678 as well as low root mean square error values of between 123 �V and 245 �V across all cases, for both

healthy controls and cardiovascular disease subgroups except the bundle branch block disease subgroup. The

results of the FTDNN method compared favourably to those of prior lead reconstruction methods.

Conclusions: A standard 12-lead ECG was successfully reconstructed with high quantitative correlations from a

reduced lead set using only five electrodes, of which four were placed on the limbs. Less reliance on precordial

leads will aid in the reduction of electrode placement errors, ultimately improving ECG lead accuracy and reduce

the number of cases that are incorrectly diagnosed.
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INTRODUCTION

The electrocardiogram (ECG) is one of the most com-

monly used medical devices in cardiology and has been

trusted by healthcare professionals since its introduc-

tion. It is used as a non-invasive method to record and

monitor the heart’s electrical bio-signals during the car-

diac cycle, and assist physicians in diagnosing cardiovas-

cular disease (CVD). In the years following the introduc-

tion of the ECG, vectorcardiography systems with vari-

ous electrode placements have been developed with the

most popular being Burger and Van Milaan,
1

McFee and

Parungao,
2

Schmitt and Simonson
3

and Frank.
4

However,

12-lead ECG remains the gold-standard method used by

cardiologists. The various leads are categorised as bipo-

lar limb leads (I, II, III), augmented unipolar limb leads

(aVR, aVL, aVF) and unipolar precordial leads (V1-V6).

Due to the manner in which leads I-III, aVR, aVL and aVF

are derived, as well as the close positional proximity of

the precordial leads, many of the ECG leads contain in-

formation from the same region of the heart.
5

This pre-

sents the possibility of exploiting repeated local infor-
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mation from a reduced lead set and using it to interpo-

late missing leads.

Previous studies relating to lead reconstruction have

focused on either ECG or vectorcardiogram (VCG) leads.

Dimensionality reduction techniques such as principle

component analysis, also known as abstract factor anal-

ysis, have been used in the past to successfully identify

redundant leads,
5-7

and various studies have attempted

to reconstruct absent leads from different configura-

tions of reduced lead sets, with varying success.
6,8-12

Prior studies
13-15

have used linear transforms to cre-

ate a matrix of basis leads consisting of coefficients,

known as a “Dower universal transform” that can be

used to reconstruct any absent leads. This method was

an ideal “one-size-fits-all” solution with questionable ac-

curacy due to the coefficients’ dependence on various

biological and environmental factors within the popula-

tion that exhibit significant variability.
16,17

Schreck et

al.
6,18

used the simplex non-linear optimisation method

to construct a universal transformation matrix which

could be used to reconstruct missing leads. The base

leads used in reconstructing the remaining 12-lead ECG,

by virtue of the universal transform matrix, initially in-

cluded leads I, aVF and V2,
18

with later work focusing on

I, II and V2.
6

Universal transforms were preceded by “popula-

tion-specific transforms” which categorised patients un-

der headings based on their gender, age and disease

classification. This strategy resulted in a transform that

was more customised to the patient in an attempt to in-

crease accuracy. Independent component analysis was

used to generate a third transform, known as “patient-

specific transform”, which reconstructs missing leads

from a reduced lead set, tailored to a specific patient.
8,9

Initially, all 12 leads are required to calibrate the trans-

form coefficients, after which the leads are removed and

subsequently reconstructed at a later stage.

Nelwan et al.
10

used a reduced lead system known

as the “EASI” ECG, in which five electrodes were placed

at simple anatomical locations found using landmarks

on the thorax to create a derived 12-lead ECG. These

landmark positions were based on the Frank lead sys-

tem in which the leads are reconstructed using the em-

pirically obtained transform coefficients. This method

was developed from the heart dipole hypothesis that

underlines vectorcardiography. The EASI lead produces

three non-orthogonal leads, of which all other leads are

reconstructed using algebraic calculations. This is achi-

eved by using linear combinations of the three non-or-

thogonal leads and the transformation coefficients.

Drew et al.
9

used an unconventional five-lead wire

system. The optimal electrode positions were determined

by optimising the root mean square error (RMSE) be-

tween the true leads and the reconstructed leads. The

process was repeated in 20 patients using 16 potential

locations, and resulted in the use of Mason-Likar (M-L)

electrode placement positions for electrodes RA, LA and

LL, in which these limb electrodes are relocated onto

the thorax. In this system, the LL electrode is placed in

the 6th intercostal space at the left mid-clavicular line,

which is located just below the standard V4 lead posi-

tion, and a chest electrode is placed in the 4th intercos-

tal space in the middle of the left mid-clavicular line and

the left sternal border, close to the standard V3 lead po-

sition.

In the current study, we used an artificial neural net-

work (ANN), which was initially introduced in 1943. ANNs

have increased in popularity in recent years, which can

be attributed to the steep increase in computational per-

formance and processing power that has become re-

adily available and easily accessible.
19

An ANN is an arti-

ficial intelligence and machine learning technique that

was conceptualised from knowledge of how human bio-

logical neural networks function, and ANNs are believed

to be a promising solution to enable machines to solve

intricate problems. This technique is capable of identify-

ing pertinent features from inputted data and estab-

lishes relationships which are translated to the output.

This is achieved by instances of prior learning used to

train the ANN. Time-series-based neural networks are a

common practical application of machine learning and

are widely used in dynamic systems. In this study, we used

a focused time-delay neural network (FTDNN), which is

well suited for time series prediction.
20

Time-delay neu-

ral networks (TDNNs) are multilayer neural networks that

can classify patterns with shift-invariance, meaning that

the classifier does not require explicit segmentation be-

fore classification. For a temporal pattern such as an

ECG, the TDNN thus avoids having to determine the be-

ginning and endpoints of each signal. TDNNs and FTDNNs

have been used extensively in speech recognition appli-

cations which pose similar challenges to ECG.
21,22

The
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objective of this study was thus to use the particular

features of a FTDNN to accurately reconstruct the full

12-lead ECG from a reduced lead set.

Many possible combinations of the six different pre-

cordial leads are available when performing lead recon-

struction. Studies that used only a single precordial lead

reported that lead V2 showed the best performance.
6,14

In the current study, we wanted to reconstruct leads

using the fewest precordial leads possible to achieve the

lowest possible RMSE, and therefore we chose lead V2

based on its documented performance. Furthermore, we

confirmed that V2 provides better performance by test-

ing each precordial lead as an input parameter for the

FTDNN on the Physiobank’s Pysikalisch-Technische Bun-

densanstalt (PTB) diagnostic ECG database and calculat-

ing the resulting RMSE and Pearson r values. The input

to the neural network was recorded from electrodes lo-

cated on the limbs as well as precordial lead V2. The

limb electrodes RA, LA, LL (where RL facilitates the refer-

ence lead used in the right leg drive circuit) in combina-

tion with the relevant mathematical equations enabled

the derivation of the bipolar limb leads (I, II, III) and uni-

polar limb leads (aVR, aVL and aVF). These leads were

chosen due to the ease of placement. The bipolar limb

leads, augmented unipolar limb leads and V2 were used

as inputs to the neural network, which produced the re-

maining leads (V1 and V3-V6) as the output. The use of

limb leads allowed for slight variability in the electrode

placement and minimised the use of precordial elec-

trodes which require significant precision. Small displace-

ment of the precordial electrodes has been shown to

have a much more significant influence on the measured

ECG signal due to their close proximity to the heart com-

pared to limb leads.
23,24

In addition, situations arise

where the precordial electrodes need to be shifted or

removed in order to administer bandages, drains as well

as perform recordings with other medical devices such

as echocardiograms.
15

However, deviations in ECG elec-

trode placement from the correct ‘standard’ position
25

can also result from errors made by trained medical

staff.
23,26-28

Therefore, a notable drawback is poor re-

producibility of precordial lead placement, which results

in high variability in the data obtained via ECG record-

ings.
29

Kerwin et al.
30

reported that lead placements with

an error of less than 1 cm were attained by trained me-

dical staff in only 50% of male patients and 20% of fe-

male patients. It has been reported that these placement

errors are frequently in the range of between 2 and 3 cm,

with some cases recording errors of up to 6 cm. Bond et

al.
31

reported that incorrect electrode placement con-

tributes to incorrectly diagnosing cardiovascular disease

in 17-24% of cases by either human or computer-based

analysis.
32

An ECG system with simple electrode place-

ment could therefore potentially be used outside the

professional environment, and potentially provide op-

portunities for use in rural locations by ordinary individ-

uals as opposed to trained clinicians in hospitals.

METHODS

This study used the PTB diagnostic ECG database,

which is an archived ECG database created by the Na-

tional Metrology Institute of Germany for research and

academic purposes. The ECG data were recorded from

both healthy individuals and patients with cardiovas-

cular disease at the Department of Cardiology of the

University Clinic Benjamin Franklin in Berlin Germany.

An ECG prototype recorder was used with a summary of

the specifications presented in Table 1.

The PTB database consists of 549 recordings from

290 individuals between the ages of 17 and 87 years,

with a mean age of 57.2 years. Of the total 290 indi-

viduals recorded, 209 were male (mean age 55.5 years)

and 81 were female (mean age 61.6 years). Each record-

ing consists of a standard 12-lead ECG as well as a Frank

3-lead VCG. However, for this study, only the standard

12-lead ECG recordings were analysed.
33

All ECG record-

49 Acta Cardiol Sin 2021;37:47�57

Reduced Lead ECG

Table 1. ECG prototype specifications

PTB ECG prototype

Channels 16 channels (14 ECG, 1 respiration, 1 line

voltage)

Input voltage � 16 mv with � 300 mv compensated offset

voltage

Input resistance 100 �

Resolution 16 bit, 0.5 �V/LSB with 2000 A/D units per

mV

Bandwidth 0-1 kHz synchronous sampling

Noise 10 �V (pp) max, 3 �V RMS with input short

circuit

ECG, electrocardiogram; LSB, least significant bit; PTB,

Physiobank’s Pysikalisch-Technische Bundensanstalt.



ings were filtered with a digital band-pass filter with a

bandwidth of 0.05-150 Hz to remove noise and baseline

drift. This filter was designed to adhere to standards set

by the American Heart Association (AHA).
25

After filter-

ing, recordings that still contained significant artefacts

were excluded. Recordings from patients that were be-

low the age of 18 years or had missing information, as

well as recordings taken on the same day, were also ex-

cluded from the study. The data exclusion process is

shown in Figure 1. The included population was divided

into subgroups based on their current cardiovascular

condition (Table 2). These data were used to train, test

and validate the neural network.

The task of prediction was to formulate a nonlinear

function f that was capable of predicting values for y(t)

from previous values of x(t), without prior values of y(t).

The model could thusbe characterised as:

y(t) = f (x(t – 1),…, x(t – d) (1)

where d is the system’s input tap delay.
20

A FTDNN was
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Figure 1. Flow diagram indicating the exclusion process as well the procedure taken to reach the final neural network. PTB, Physiobank’s

Pysikalisch-Technische Bundensanstalt.

Table 2. A summary of the included population’s allocation to the training, validation and test categories

Included population

Total

n

Train

n (% of total)

Validate

n (% of total)

Test

n (% of total)

Bundle branch block (BBB) 9 5 (55.56) 2 (22.22) 2 (22.22)

Cardiomyopathy (CM) 17 10 (58.82) 4 (23.53) 3 (17.65)

Dysrhythmia (D) 6 04 (66.67) 1 (16.67) 1 (16.67)

Healthy controls (HC) 41 27 (65.85) 8 (19.51) 6 (14.63)

Myocarditis (M) 3 02 (66.67) 0 (0)0.00 1 (33.33)

Myocardial hypertrophy (MH) 5 3 (60)0. 1 (20)0.0 1 (20)0.0

Myocardial infarction (MI) 234 194 (82.91)0 30 (12.82)0 10 (4.27)00

Valvular heart disease (VHD) 4 2 (50)0. 1 (25)0.0 1 (25)0.0

Total 319 247 (77.43)0 47 (14.73)0 25 (7.84)00



constructed to calculate the time series values for leads

V1 and V3-V6, given leads I, II, III, aVL, aVR, aVF and V2.

The neural network was trained using past values of

both y(t), consisting of leads V1 and V3-V6, and x(t),

consisting of leads I, II, III, aVL, aVR, aVF and V2, where

y(t) is the desired output of the network and x(t) is the

input provided to the network. The layout of the neural

network is shown in Figure 2.

The network could be described as a feedforward

network consisting of a single hidden layer. The activa-

tion functions used for the hidden layer (f1) and output

layer (f2) were the tan-sigmoid transfer function and lin-

ear transfer function, respectively. Ten neurons were

used in the hidden layer, as this was found to be the op-

timal number during network training. Regularisation

was implemented to mitigate the risk of overfitting, and

less than 10 resulted in underfitting and more than 10

also resulted in exponentially increased processing time,

lowering the time performance of the network signifi-

cantly. The tapped delay line d was used to store prior

values of up to two timesteps for the input x(t) sequ-

ences. Bias values b1 and b2 were used to shift the acti-

vation functions to the left or right. The Levenberg-

Marquardt algorithm was used, in which training con-

cluded when the validation error failed to decrease for

six iterations.
20

The ECG records for each subgroup were

divided into training, validation and test sets, and each

of the three sets contained healthy subjects as well as

records from all the different CVD diseases available

from the database (seen in Table 2). The ECG leads

where normalised to fall within the range [-1, 1] before

training the neural network, and later this process was

reversed to obtain the true outputted values. The per-

formance of the network was analysed using correlation

and RMSE analysis between the reconstructed leads and

the actual recorded values.

RESULTS

After the exclusion process, 319 cases were in-

cluded in the study out of a total of 549 available cases

in the PTB database. The characteristics of the cases are

shown in Table 3. Analysis of the results showed five

outliers out of the 25 records that made up the total test

population. These consisted of two bundle branch block,

one cardiomyopathy and two myocardial infarction re-

cords. Subjects with any lead that contained negative

correlation values, p > 0.05 and RMSE > 500 �V, were

identified as outliers.

The average Pearson r and RMSE values of the dif-

ferent disease subgroups and the various derived ECG

leads are shown in Table 4 to Table 7 and are divided

into the test population both including and excluding

outliers. The leads used as inputs to the FTDNN were

omitted as they are used to derive the remaining leads

and were therefore without errors and exhibited perfect

correlations (r = 1.00). The percentage correlation va-

lues were found to be equivalent to the Pearson r values

in Table 4 to Table 7 for up to three decimal places, which

was used as an indication of correlation by Tsouri as well

as Tsouri and Ostertag.
11,12

The results for the test popu-

lation including outliers across the reconstructed leads

for all cases showed correlation values ranging from

0.8582 to 0.9705, and RMSE values of between 124 and

313 �V. The test population excluding outliers showed
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Table 3. Total population statistics

Population statistics

n 319

Male (%) 71.16

Female (%) 28.84

Median age (all) 55 � 13.2

Median age (male) 53 � 12.8

Median age (female) 62 � 13.4

Minimum age 22

Maximum age 86

Bundle branch block 9

Cardiomyopathy 17

Dysrhythmia 6

Healthy control 41

Myocarditis 3

Myocardial hypertrophy 5

Myocardial infarction 234

Valvular heart disease 4

Figure 2. The FTDNN layout.



correlation values ranging from 0.8609 to 0.9678, and

RMSE values between 123 and 245 �V for all cases,

across the reconstructed leads. All correlations, except

one outlier, were statistically significant at p < 0.01.

Figure 3 was adapted from Schrek and Fishberg,
6

in

which the RMSE analyses for the non-linear optimisa-

tion method (NLO), EASI leads method, Mason-Likar

method and FTDNN method were plotted for the vari-

ous leads and compared on the same set of axes. The

NLO and FTDNN methods exhibited zero RMSE for the

leads (I, II, III, aVR, aVL, aVF and V2) used as inputs to

reconstruct the remaining leads. Figure 4 displays a

comparison between the derived signal using the FTDNN

method and the recorded signal for a 12-lead ECG of

healthy controls from the test set.

DISCUSSION

This retrospective study is the first ANN study, or

more specifically a FTDNN study, to uses limb leads and

lead V2 as the input to the network to reconstruct the
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Table 4. Population correlation including outliers

Pearson r n V1 V3 V4 V5 V6

All cases 25 0.9705 0.9447 0.8567 0.8582 0.8844

Bundle branch block 2 0.9763 0.9295 0.9270 0.8091 0.7702

Cardiomyopathy 3 0.9819 0.8977 0.7831 0.8736 0.7970

Dysrhythmia 1 0.8567 0.7607 0.7932 0.8802 0.9072

Healthy control 6 0.9678 0.9809 0.9246 0.9719 0.9674

Myocarditis 1 0.9859 0.9115 0.7902 0.9295 0.8952

Myocardial hypertrophy 1 0.9934 0.9768 0.8846 0.9583 0.9833

Myocardial infarction 10 0.9763 0.9643 0.8474 0.7843 0.8737

Valvular heart disease 1 0.9564 0.9252 0.7922 0.8875 0.9341

Table 5. Population correlation excluding outliers

Pearson r n V1 V3 V4 V5 V6

All cases 20 0.9678 0.9436 0.8609 0.9140 0.9204

Bundle branch block - - - - - -

Cardiomyopathy 2 0.9821 0.8580 0.7055 0.9188 0.9562

Dysrhythmia 1 0.8567 0.7607 0.7932 0.8802 0.9072

Healthy control 6 0.9678 0.9809 0.9246 0.9719 0.9674

Myocarditis 1 0.9859 0.9115 0.7902 0.9295 0.8952

Myocardial hypertrophy 1 0.9934 0.9768 0.8846 0.9583 0.9833

Myocardial infarction 8 0.9739 0.9666 0.8829 0.8766 0.8773

Valvular heart disease 1 0.9564 0.9252 0.7922 0.8875 0.9341

Table 6. Population RMSE including outliers

RMSE n V1 V3 V4 V5 V6

All cases 250 124 236 313 250 156

Bundle branch block 2 176 525 671 583 290

Cardiomyopathy 3 194 387 555 336 158

Dysrhythmia 1 092 177 271 316 343

Healthy control 6 097 167 240 157 158

Myocarditis 1 071 158 297 339 201

Myocardial hypertrophy 1 145 087 199 356 209

Myocardial infarction 100 094 193 229 179 101

Valvular heart disease 1 297 256 241 236 148

Table 7. Population RMSE excluding outliers

RMSE n V1 V3 V4 V5 V6

All cases 200 123 176 245 182 140

Bundle branch block - - - - - -

Cardiomyopathy 2 241 352 450 187 142

Dysrhythmia 1 092 177 271 316 343

Healthy control 6 097 167 240 157 158

Myocarditis 1 071 158 297 339 201

Myocardial hypertrophy 1 145 087 199 356 209

Myocardial infarction 8 095 141 195 133 086

Valvular heart disease 1 297 256 241 236 148



missing precordial leads. The FTDNN resulted in the re-

construction of the full 12-lead ECG with Pearson r cor-

relations for the test population including outliers rang-

ing from 0.7607 to 0.9934, and RMSE values between 71

and 671 �V, with only one lead identified as not being

statistically significant across all cardiovascular diseases.

In the case of the test population excluding outliers,

the lower bound of the range of Pearson r correlations

decreased to 0.7055 and the upper bound remained at

0.9934, however the average across all cases increased

significantly. In the case of the RMSE values, the lower

bound for the population excluding outliers remained

unchanged at 71 �V, however the upper bound decreased

significantly to 450 �V, and the average across all leads

also decreased significantly. All leads were statistically

significant (p < 0.01) across all cardiovascular diseases.

Both the correlation and RMSE values in Table 4 to Table

7 as well as Figure 3 show that the reconstructed leads

were comparable with previous methods. Lead V4 was

the weakest reconstructed lead by the FTDNN method,

exhibiting higher RMSE values in comparison with the

other methods. After analysing the removed outliers,

the FTDNN method failed to accurately reconstruct those

with bundle branch block cardiovascular disease. With

only a small sample size of cardiovascular diseases avail-

able to train the neural network, further data are required

in order to confidently verify this finding.

The NLO study done by Schreck et al. (2002)
18

used

the PTB database as well as one additional database.

The same leads were used as basis leads for the recon-

struction of the absent five precordial leads (V1, V3-V6).

The Pearson r correlation for leads V1, V3-V6 for all

cases was 0.71-0.90, which was slightly weaker com-

pared with the current study. However, the RMSE values

of the NLO method were lower and compared favour-

ably to those of the EASI leads, M-L and the current

study FTDNN reconstruction method on the same set of
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Figure 3. Comparison of the RMSE analysis for several reconstruction

methods. The graph was adapted from Schrek and Fishberg
6

and com-

pares the RMSE � SD NLO 12-lead ECG derivation method and the Ma-

son-Likar method, as well as the RMSE and interquartile range for the

reported EASI and the FTDNN methods. ECG, electrocardiogram; FTDNN,

focus time-delay neural network; NLO, non-linear optimisation method;

RMSE, root mean square error; SD, standard deviation.

Figure 4. A 12-lead electrocardiogram (ECG) of a healthy control indi-

cating the reconstructed signal (red) vs. the recorded signal (blue).



axes, as seen in Figure 3.

Tsouri and Ostertag
12

used the same PTB database

and showed high correlations between the reconstructed

leads and the actual lead values with an average per-

centage correlation value of 96.9-97.9% for leads III,

aVR, aVL and aVF, and 92.8-96.3% for V1, V3, V4, V5 and

V6 after 30 seconds. The Pearson r correlation values in

the current FTDNN study are shown in Table 4 and Table

5, and they were equivalent to the percentage correla-

tion used by Tsouri and Ostertag for up to three decimal

places. Therefore, the current study compares less fa-

vourably to that of Tsouri and Ostertag.
12

However, it is

important to note that the FTDNN did not require past

values of all 12 leads for each patient, whereas Tsouri

and Ostertag required a calibration period in which data

from all the leads were required before missing leads

could be reconstructed. This would not be appropriate

in situations in which only reduced lead ECGs were avail-

able. Specialists trained in placing the full 12-lead ECG

would also be required to place the initial leads before

they were removed, which is not desirable.

The EASI lead study performed by Nelwan et al.
10

used nonstandard lead placements based on the Frank

leads to derive the 12-lead ECG. However, using an un-

conventional lead placement system resulted in inherent

electrode placement variability within all leads.
34

The

FTDNN performed slightly less favourably in comparison

with the EASI lead method with respect to RMSE, how-

ever the EASI study consisted of only 44 male subjects all

of whom required a percutaneous coronary intervention

procedure. This limited the range of tested cardiovascular

diseases to men with acute coronary syndromes. The

clinical value of the VCG and the Frank lead system is well

documented, however, since its inception 50 years ago,

the method has become obsolete. This is due to the lack

of existing education on the technology, placement and

equipment. In contrast, the current study as well as

Schreck and Fishberg’s
6

used standard limb leads and V2,

which are a subset of conventional 12-lead ECG.

Drew et al.
9

performed an M-L study which also used

non-conventional lead placement for two leads located

in the vicinity of traditional leads V3 and V4. The FTDNN

performed similar to the M-L method for leads V1-V5,

with slightly higher mean values but lower standard de-

viations in the reconstructed leads. The FTDNN recon-

structed lead V6 had a lower mean value and better

standard deviation (Figure 3). The M-L validation study

reconstructed leads for prehospital ST-segment monitor-

ing, limiting the focus of the study to cardiac rhythm,

prior infarction, ST/T wave changes and acute myocardial

ischemia.

The only other known neural network study was

done by Prauzek et al.,
7

in which various combinations

of precordial leads as inputs were used to reconstruct

the remaining absent precordial leads, with limited suc-

cess. Focus was placed solely on the precordial leads

which were reconstructed using neural networks which

used different combinations of V1, V2 and V6 as inputs

and reconstructed the remaining precordial leads as

outputs. However, the reduced lead subset used in the

current study is preferrable, as one precordial lead (V2)

was required in the reconstruction of the 12-lead ECG

compared to the three precordial leads required by

Prauzek et al.
7

In addition, the use of simple lead place-

ment of the limb leads (I-III, aVR, aVL and aVF) obtained

from the limb electrodes could provide additional views

of the heart without the need for complex or obstruc-

tive electrode placement. These additional leads in-

creased the probability of obtaining an accurate lead re-

construction.

The current study has several strengths. The ECG re-

cordings were conducted by a medical doctor in a clini-

cal environment. The PTB database used in this study is

trusted and has been used in several prior studies done

within the field of research. The data were pre-pro-

cessed using a band-pass filter that adheres to recom-

mendations set by the AHA. A large training population

consisting of 247 cases was included in the study and

subsequently used to train the neural network. The po-

pulation exhibited great diversity with male and female

patients aged 22-86 years, and included several disease

subgroups in which the FTDNN network could accurately

reconstruct. In terms of correlation, the FTDNN network

compared favourably to known lead reconstruction me-

thods. With respect to RMSE, the current study produced

similar results to known lead reconstruction methods,

although lead V4 exhibited slightly weaker RMSE values.

Finally, this study used standard lead positions that re-

lied less on precordial leads, using information available

from the limb leads which are less sensitive to variabil-

ity. As this is a retrospective study, several sources of

bias exist that can be identified as limitations. Although
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the ECG recordings were conducted by a medical doctor,

precordial lead placement inherently has high variability

which may have affected the results. The ECG recordings

were acquired from a single database which increases

the possibility of random errors and spectrum bias. A

large amount of the available data was required to train

the neural network in such a manner as to include all

the disease subgroups and ensure the network was fully

represented. This resulted in a small percent (7.84%) of

the total cases being available for testing the neural net-

work, which is significantly less than alternative recon-

struction methods and may have led to selection bias. In

the EASI lead study, the derived leads calculated by the

early implementation of the EASI method differed nota-

bly from the original leads. This was believed to be a re-

sult of deriving the transformation coefficients from a

limited dataset. Work done by Feild et al.
14

aimed to im-

prove on the accuracy of the 12-lead ECG reconstruc-

tion. This was achieved by calculating a new set of EASI

lead transformation coefficients from additional data ac-

quired from two ECG databases. The two databases con-

sisted of 892 and 91 ECG records, respectively. Nelwan

et al.
10

used the improved EASI lead coefficients, testing

the method on 44 subjects. In comparison, we used 319

training subjects and 45 validation subjects to construct

the neural network model, and tested this model on 25

subjects. The limited amount of available data used by

the current study may explain why the method per-

formed slightly less favourably than the established re-

construction methods (Figure 3) in addition to the fail-

ure to accurately reconstruct diseases with less available

training data, such as bundle branch block. This also in-

dicates the potential for improvement and optimisation

of the FTDNN method, or ANN methods in general, by

acquiring larger datasets used in the training procedure.

The FTDNN took advantage of the widespread re-

dundancy expressed throughout the precordial leads.

The network was able to accurately identify non-linear

relationships between the input and output leads, re-

sulting in the accurate calculation of the numerous neu-

ron weights and bias values required to reconstruct the

missing leads. It is important to note that the network

could only accurately predict the output of cardiovas-

cular diseases present in the population used to train

the neural network. Therefore, new cardiovascular dis-

eases not present in the training population or diseases

that display highly variable waveform structures would

not be reproduced accurately. Additionally, waveforms

that are not repetitive in nature and exhibit sudden de-

viation from a sequence would not be reconstructed ac-

curately, as seen in Figure 5.

CONCLUSION

In conclusion, the FTDNN successfully reconstructed

V1 and V3-V6 from input leads I, II, III, aVL, aVR, aVF and

V2. The results obtained excluding outliers indicated

high correlations that were statistically significant and

low RMSEs for both the healthy controls and the disease

subgroups, except those in the bundle branch block dis-

ease subgroup. This may be due to the high levels of re-

dundancy that exist primarily in precordial leads. This

could lead to further research in ECG lead reduction and

possibly novel methods to diagnose cardiovascular dis-
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Figure 5. Indication of the effect of irregular inputs to the focus time-

delay neural network (FTDNN) and its consequence on the reconstructed

output. Lead aVL from a subject diagnosed with valvular heart disease

used as an input to the FTDNN network as well as the corresponding re-

corded signal and the reconstructed signal of V3.



eases that are simple to execute, resulting in improved

accuracy and patient comfort. Lo et al.
35

reported that a

wearable ECG device is ready for clinical use with an ac-

curacy comparable to standard 12-lead ECG systems.

The medical relevance of this study is the potential to

use a reduced lead set to reconstruct the traditional full

12-lead ECG that is trusted by cardiologists and health-

care specialists when diagnosing cardiovascular diseases

and during patient monitoring. The use of five electrodes

of which four are limb leads will be less sensitive to er-

rors in electrode placement and will allow for its use in

rural applications by nurses or trained individuals com-

pared to the standard 12-lead ECG which requires spe-

cialists in a clinical environment. Fewer leads will also be

more comfortable for patients undergoing long-term

monitoring and will be easier and less time consuming

to apply. Overall, the technology will be more accessible

and readily available for the general population. This

study will contribute to further discussions involving

12-lead ECG as being the gold standard, the possibility

for further lead reduction, the existence of redundancy in

precordial leads as well as the methods in which cardio-

vascular diseases are diagnosed. The immediate future

focus of this research will be to validate the FTDNN with

larger datasets, the acquisition of which is currently the

primary focus. Further future work will also entail focus-

ing on the limitations of this study which can be ad-

dressed by gathering data from multiple databases con-

sisting of healthy controls and subjects with cardiovas-

cular diseases. These data will be used to further train

and test the FTDNN and further expand the network’s ex-

posure to more pathologies as well as improve the recon-

struction of the current existing pathologies. Additionally,

an FTDNN could be embedded on a device and used to

actively reconstruct the full 12-lead ECG in real time.
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