透過您的圖書館登入
IP:3.129.148.4
  • 學位論文

磁流變研磨加工效能之數值分析

Numerical Analysis on the Finishing Performance of Magnetorheological Abrasive Flow Finishing(MRAFF) Process

指導教授 : 戴昌賢

摘要


磁流變研磨拋光技術是利用磁流變拋光液在高度磁場強度的作用下,將由牛頓流體轉變成非牛頓系Bingham流體的特性,使研磨粒子與沉浸在拋光液中的工作部件接觸時,經由相對運動在表面產生高剪切應力,達到對工作部件的切削與拋光之目的。 由於加工過程中,流場耦合了磁場、熱流場與多相流現象,流場現象與工作機制十分複雜,因此本研究希望利用計算流體力學,建立一套分析磁流變流場特性與計算研磨切削效能的數值模擬工具,並進行各種操作參數下,對導磁性、非導磁性與複合式材料的表面研磨拋光機制與切削效能探討,以利此高精密加工技術的後續發展。研究結果發現,流場雷諾數Re與哈特曼數Ha的增強,將有助於工件表面切削深度的提升,但表面粗糙度品質卻將下降;而網目數的增加,可有效改善表面粗糙度品質不佳的問題。此外,在研究案例分析中,加工導磁性材料可獲得較大預期切削深度,但流體流動剪力 小於材料降伏力 ,因此整體的切削機制作用不良,無法達到所預期的切削效果;而加工非導磁性材料雖然作用切削深度低,但流場速度分佈受勞倫茲力作用影響,表面流動剪力上升,預期切削效果較好。最後,經由上述的參數分析,本研究推導出切削方程式與粗糙度品質方程式,將有利於未來自行調配磁流變拋光液性質,在研究矩陣範圍條件下,預測工件表面切削深度及粗糙度品質趨勢走向。

並列摘要


Magnetorheological Abrasive Flow Finishing (MRAFF) is a novel precision finishing process using smart magnetorheological polishing fluid. The said fluid can lead to a solid-liquid phase change under external magnetic field, and thus change Newtonian fluid to non-Newtonian Bingham plastic fluid. This smart behavior of MR-polishing fluid is utilized to precisely control the high normal and shear force, hence final cutting and polishing in work piece surface. However, because the MRAFF process coupled with magnetic field, thermal flow field, and multi-phase flow. The mechanism is so complicated that difficult to obtain operate parameters. Therefore, this research develops the numerical tools to analyze the characteristics of magnetorheological fluids and the finishing efficiency of abrasives, and meanwhile, investigates the cutting efficiency on curved-surface parts and the variations in magnetorheological fluids using the characteristic equations of magnetorheological fluid under different work piece materials and working parameters. The research result shows: when Reynolds number and Hartmann number are enhancement, will be helpful to the work piece cut depth increase, but surface roughness quality will drop, and mesh size increase can improve the surface roughness quality . In addition, in the research case analysis, the magnetic conductive material can obtain the greatly prediction of cutting depth, but fluid flow shear force is smaller than the material yield force . The cutting mechanism of the overall role is bad, can not achieve the desired effect of cutting. On the other hand, cutting depth is low in the polishing non-magnetic conductive material, because surface shear force rise since the velocity field distribution, by the Lorentz force action influence, cause better cutting effect of prediction. Finally, we can derive cutting depth equations and surface roughness quality equations from all of the parameter analysis in this research. The research results will be helpful that someone could blend magnetorheological fluid in further, prediction cutting depth and roughness quality of work piece surface in research matrix range.

參考文獻


【1】 Pamme, N., “Magnetism and Microfluidics,” Lab Chip, Vol. 6, pp. 24-38, 2006.
【2】 Suzuki, H. and Ho, C. M., “A Magnetic Force Driven Chaotic Micro-mixer,” MEMS-02, Las Vegas, USA, 2002.
【3】 Nguyen, N. T., Beyzavi, A., Ng, K. M. and Huang, X., “Kinematics and Deformation of Ferrofluid Droplets under Magnetic Actuation,” Microfluidics Nanofluidics, Vol. 3, pp. 571-579, 2007.
【4】 Rabinow, J., “The Magnetic Fluid Clutch”, Electric Engineering, Vol.67, pp. 417-431, 1948.
【5】 Spencer Jr, B. F., Dyke, S. J, Sain, M. K. and Carlson, J. D., “Phenomenological Model of a Magnetorheological Damper”, Journal of Engineering Mechanics, Vol. 123, pp. 230-238, 1997.

延伸閱讀