透過您的圖書館登入
IP:18.222.121.170
  • 學位論文

智慧綠能混合電力系統元件選擇與最佳化設計

Component Selection and System Optimization for Smart Green Hybrid Power System

指導教授 : 王富正

摘要


本論文提出一個綠能混合電力系統設計流程,先進行系統主要元件選擇,接著再進行元件規模與能量管理最佳化。我們利用此流程針對中華顧問工程之綠能示範屋狀況進行重新設計,並比較與原先性能之差異。本論文進一步建立參考資料庫與設計使用介面,作為系統設計工具,期望其他設計者能藉由開發之系統設計流程與設計工具,減少開發時程與有效提升系統性能。 首先,在設計流程中第一步的元件選擇上,我們分別針對供電來源與儲能元件進行選擇。在供電來源上,分析可選擇之能量來源的供電成本與供電穩定性,根據評估結果選擇供電成本最小且有效提升供電穩定性之組合;而在儲能元件上,則考慮各元件之成本、效率與使用限制,選出符合使用條件的元件。 其次,在系統元件規模與能量管理最佳化的部分,我們利用Matlab/SimPowerSystemTM建立電力系統模型,然後進行模擬,以分析成本與可靠度。根據設計需求,我們可選擇使用網格法建立設計參考圖討論相關限制並找出最佳化解,或者使用Pattern Search以較快速度得出最佳解。 最後,在設計工具上,除了將設計過之案例的成本分析與可靠度分析建成資料庫,也利用Matlab GUI介面設計模擬使用者介面,以供使用者參考資料庫與利用使用者介面作簡單測試,藉此了解調整不同參數對性能之影響。 為了促使人們使用綠能,必需降低綠能系統之成本與增加系統可靠度,而適當的設計流程可減少開發時程,並有效達到最佳化配置。另外,藉由資料庫與設計工具可了解對系統影響的因子,使政府與相關產業針對這些因素找出改善的方法,讓綠能混合電力系統在未來更有競爭力。 關鍵字: 綠能混合電力系統、系統最佳化設計、SimPowerSystem、成本分析、電力系統設計工具。

並列摘要


This thesis proposes an optimal design process to design hybrid power systems. The process consists of two steps: selection of system components and adjustment of component sizes and power management. We use this process to re-design the green energy house built by China Engineering Consultants, INC (CECI) and discuss the performance improvement by the proposed method. In addition to the design process, we also build the database and simulation design interface to shorten development time by referring to previous designs through the Graphical User Interface (GUI). First, we select the suitable system components, such as power sources and energy storage elements. We analyze the cost and reliability of different energy sources to choose suitable energy sources. And we select the suitable energy storage components that can reduce system cost while satisfying the constraints. Second, we adjust the component sizes and power management to optimize the system cost and reliability. We apply Matlab/SimPowerSystemTM to build the hybrid power model and use the simulation responses to estimate the system’s cost and reliability. We can use the grid method to obtain reference plots and to discuss possible solutions and constraints, or we can apply pattern search to find the optimal solution in a more efficient way. Last, we build the data base and simulation interface by Matlab. The reference plots from the previous designs can be saved and shown by the Matlab GUI. We also build the simulation interface with Matlab GUI so that designers can use these GUIs to develop new systems in the fucture. For promoting green energy, we need to reduce the system cost and improve the system reliability. Good design methods can help achieve these requirements efficiently. We hope that the proposed design process can allow the government and the related industry to develop competitive green energy policies and systems in the fucture.

參考文獻


[14] 蕭奕劭, 結合再生能源及電解產氫之混合電力系統之發展與最佳化設計, 國立台灣大學機械工程學研究所碩士論文, 2016。
[9] F.C. Wang and H.C. Chen, “The development and optimization of customized
[10] O.H. Mohammed, Y. Amirat, M. Benbouzid and A.A. Elbaset, “Optimal design of a PV/fuel cell hybrid power system for the city of Brest in France,” Green Energy, 2014 International Conference on, Sfax, Tunisia, 2014.
[12] W. Wu, V.I. Christiana, S.A. Chen and J.J. Hwang, “Design and techno-economic optimization of a stand-alone PV(photovoltaic)/FC (fuel cell)/battery hybrid power system connected to a wastewater-to-hydrogen processor,” Energy, vol.84, pp. 462-472, May. 2015.
[13] A. Maleki and A. Askarzadeh, “Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran,” Sustainable Energy Technologies and Assessments, vol.7, pp. 147-153, Sep. 2014.

延伸閱讀