透過您的圖書館登入
IP:18.118.27.125
  • 學位論文

全整合智慧CMOS生醫系統單晶片設計與實現

Design and Implementation of Fully-integrated Smart CMOS Biomedical SoCs

指導教授 : 呂學士
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


對於實現未來醫療服務的願景,CMOS生醫系統單晶片的角色越益重要且其具有相當大的潛力。本論文除了對整體CMOS生醫系統單晶片的設計做一完整介紹外,也將完整介紹五個針對各式醫療電子應用,所研發之智慧低功耗全整合式CMOS生醫系統單晶片。其依應用所需,整合適當之CMOS微感測器與致動器,並設計相對應的感測讀取電路及能源界面電路。以下為所研發之生醫系統單晶片的摘要介紹: 1.高靈敏度無線CMOS DNA 檢測系統單晶片 利用台積電0.35 μm製程技術,實現兩種具高度整合之DNA生物分子檢測單晶片。其中一個設計上整合了DNA懸臂樑式生物感測器技術以及提出一具自我校正之振盪器式讀取電路,其具有很高的讀取靈敏度( 2 kHz/Ω ),可將DNA感測器所產生之微小電阻變化轉換成頻率變化並透過頻率數位轉換器數位化後無線送出。實際量測結果證明,其可成功分辨 < 0.02% 之感測電阻變化 (0.6 Ω),並成功分辨1 pM 之匹配和不匹配DNA序列。另一個單晶片則是在CMOS上實現一無線奈米線B型肝炎病毒檢測SoC晶片系統。其提出一低雜訊高CMRR前端介面電路,利用截波技術將讀取放大電路的低頻雜訊升頻後經一低通濾波器濾除,達到低雜訊要求。而其架構使用一軌對軌差動差分放大器組成,具有大輸入範圍、高輸入阻抗及高CMRR的特性。實際量測結果證明其適合用來檢測低濃度(10 fM) B肝病毒DNA並可成功分辨 1鹼基對的差異。 2. 可命令植入式CMOS放藥系統單晶片 利用台積電0.35 μm製程技術以及所設計的後製程步驟,將無線接收/控制電路與可填裝藥之八個藥槽陣列一起實現並整合於CMOS晶片上,完成一個CMOS智慧給藥系統單晶片。該晶片具有生物相容性及無線傳輸能力,可透過微創手術植入人體,並藉由PDA等無線裝置精密控制藥物釋放以達到非侵入式的即時治療效果,其可以應用在局部治療或是緊急急救(如心臟病)上。根據體外試驗結果,在進行活化的電流傳出後,從薄膜破裂到釋出藥物所需時間約50毫秒。 3.生醫應用之可環境取能可重組式多參數CMOS系統感測晶片 此晶片利用台積電 0.35 μm製程技術結合了四種不同類型之微感測器(電容、電阻、電流及電壓輸出形式)來實現多參數之感測生醫晶片系統,並提出一個可適用於所有輸入電訊號型態之可重組式讀取電路架構,此讀取電路亦具備很高的線性度(R平方值為0.999)。此外,在此系統中,亦提出一可同時擷取雙環境能源之能源採集介面電路,其總轉換效率可達73%,提供此多感測系統永續的操作能源。其晶片面積為11.25 mm2且功耗僅有942.9 μW。根據實驗結果,利用此晶片,四種生理參數(溫度、血糖和蛋白濃度以及pH酸鹼值)可成功被無線讀出。 4.473 μW低功耗16通道無線生理電訊號讀取系統單晶片 利用台積電 0.18 μm製程技術實現一16通道生理電訊號讀取系統單晶片,其晶片面積為4 mm × 3 mm。為了減少系統功耗(減少46%),其前端讀取電路使用通道循環切換技術,同時只有四個通道開啟到正常放大模式,其餘則進入省電模式並同時進行auto-zero電路偏移誤差取樣。而得到的電壓輸出大小,經16:1 TDM的方式送到一比較器及數位調變電路量化成時間位置調變差異(PPM),此技巧的好處是得到的數位脈衝寬度可將之最小化,故當搭配無線OOK調變發射電路時,因大部分時間資料為0,無線發射電路可關掉,因此大量減少無線電路的平均功耗(比起一般數位碼通訊減少約80%)。此晶片系統操作在1V,連續無線傳輸之平均功耗僅473 μW,可以解決一般長時間連續無線腦波讀取分析時,功耗大待機時間短的問題。

並列摘要


CMOS biomedical systems have great potential to realize the vision of future healthcare service. In this dissertation, a complete overview of CMOS biomedical SoCs is first given. Introductions to the key building blocks, especially the readout part, and important design techniques are addressed. Then five wireless fully-integrated CMOS SoCs with different sensor readout/actuation circuits, which are designed and implemented for several biomedical applications covering biological, medical, and healthcare fields, are also completely introduced. First, two fully-integrated biosensor SoCs realized in TSMC 0.35 μm CMOS process are presented for label-free DNA molecule detection. One is designed based on cantilever sensor technology and oscillator-based self-calibrated readout circuit with high sensitivity (2 kHz/Ω), and it could detect < 0.02% of resistance variation (0.6 Ω) and achieve a limit of detection (LOD) of less than 1 pM. The other is designed based on polysilicon nanowire technology and chopper DDA-based readout circuit with features of low noise, high CMRR, and rail-to-rail input range. Its LOD is as low as 10 fM. The capability to distinguish one base-pair mismatched DNAs is also demonstrated. An implantable SoC integrating controller/actuation circuitry and 8 individually addressable drug reservoirs is also demonstrated for on-demand drug delivery. It is implemented by TSMC 0.35 μm CMOS technology and post-IC processing. Based on electrothermal activation technique, drug releases can be precisely controlled by wireless signals. Experiments show that the membrane failure occurs in 50 ms after activation current is applied. Implanted by minimally invasive surgery, this SoC can be used for the precise drug dosing of localized treatment, such as the cancer therapy, or the immediate medication to some emergent diseases, such as heart attack. To further develop a self-powered wireless biomedical platform able to address physical, chemical, and biological parameters, a highly adaptive multi-sensor SoC comprising four on-chip sensors and a smart wireless acquisition system is realized in TSMC 0.35 μm CMOS process. To intelligently process different types (C/R/I/V) of sensor signals, a linear (R2 = 0.999) and reconfigurable sensor readout is proposed. A two-input energy harvesting interface with conversion efficiency of 73 % is also integrated for long-term use. The entire SoC occupies die area of 11.25 mm2 and consumes only 942.9 μW. Experimental results show that four physiological parameters (temperature, glucose/protein concentration, and pH value) can be simultaneously monitored using this chip. Finally, a 473 μW wireless 16-channel biopotential acquisition SoC with UHF RF energy harvester is presented. It is fabricated in TSMC 0.18μm CMOS process with a die size of 4 mm × 3 mm. Using proposed PPM/OOK modulation, the power-consumption of the wireless transmitter can be dramatically reduced by 80%. A novel structure of AFE, which combines auto-zero technique and channel switching method to obtain both low-noise and low-power features, is also proposed in this work. During performing wireless transmission, this chip consumes only 473 μW at 1V supply voltage, and hence it is suitable for long-term wireless biopotential acquisition application.

參考文獻


Chapter 1
[1.1] P. Cong, N. Chaimanonart,W. H. Ko, and D. J. Young,“A Wireless and Batteryless 130 milligram 300 μW 10-bit Implantable Blood Pressure Sensing Microsystem for Real-time Genetically Engineered Mice Monitoring”, ISSCC, 2009, pp. 428-429.
[1.2] P. D. Bradley, “An ultra-low-power high-performance medical-implant-communication-system transceiver for implantable devices,”in Proc. IEEE Biomedical Circuits and Systems Conf., 2006, pp.158–162.
[2.1] Christian C.Enz and Gabor C. Teams, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” proceedings of the IEEE, Nov 1996.
[2.2] Tao Yin, Haigang Yang, Quan Yuan, and Guoping Cui, “Noise analysis and simulation of chopper amplifier,” APCCAS 2006.

延伸閱讀