透過您的圖書館登入
IP:18.223.195.97
  • 學位論文

光電極的製備及其在光電化學電池上之應用

Preparation of Photoelectrodes for Photoelectrochemical Cells

指導教授 : 簡淑華

摘要


本論文中討論的光電化學電池主要可分為吸收光子產生電子的太陽能電池與將光能轉變為化學能的光電水分解兩大類。在實驗上主要製備光電化學電池的電極,藉由不同的光電極製備方式與裝置組成來提升光電化學轉換之效率。 在量子點敏化太陽能電池的光陽極研究上,本論文中以水熱法直接在導電玻璃上生成一維結構的單晶二氧化鈦奈米柱陣列,並進一步在二氧化鈦奈米柱陣列的表面以離子吸附反應法沈積了窄能階的半導體硫化鎘作為敏化層,以硫化鋅作為保護層。且探討硫化鋅沈積量對於光電轉換效率的影響,發現在適當的硫化鋅沈積量的情況下光電流會增加、光電轉換效率也會提升。接著藉由改變二氧化鈦奈米柱陣列長度與硫化鎘沈積量來最佳化敏化電池的光電轉換效率,其最佳效率達到1.84%,此時光電流密度為4.19 mA cm-2、開環電流為0.82 V和填充因子為54%。 為了探討二氧化鈦奈米柱的生成機制,我們先合成了二氧化錫空心微米球,合成出的空心微米球是由粒徑約20到40奈米球組成;再進一步將此材料上生長了二氧化鈦奈米柱,使成二氧化鈦奈米柱-二氧化錫空心微米球的複合材料,並利用此系列材料作為染料敏化太陽能電池散射層,探討反射率與結構不同的樣品對光電轉換效率的影響。沒有塗佈上散射層的二氧化鈦奈米粒子之電極其光電轉換效率為6.5%,而以二氧化鈦奈米柱-二氧化錫空心微米球的複合材料與二氧化鈦奈米顆粒摻雜所得之混合材料作為染料敏化太陽能電池的散射層的光電轉換效率提升至7.4%。 另外,我們首次嘗試以微波輔助水熱法成功合成二氧化鈦奈米柱陣列,此方法之操作方式簡單容易且反應時間較短,並且改變反應物的濃度獲得的不同柱長與柱徑的二氧化鈦奈米柱陣列,並利用過氧化氫蝕刻的方式增加二氧化鈦奈米柱陣列的表面積,當二氧化鈦奈米柱陣列的染料吸附度與二氧化鈦奈米顆粒一樣好的情況下,光電流密度較二氧化鈦奈米顆粒所組成的電極高,因為一維結構提供直接的電子傳導路徑而使電子電洞對再結合率降低,其5 μm長度的二氧化鈦奈米柱陣列樣品可達光電效率為3.83%。 在光電水分解的研究中,我們利用溶劑熱法合成了四元硫屬化合物硫化銅錫鋅,並將其塗佈於導電玻璃上作為陰極;加上以用二氧化鈦奈米顆粒沈積硫化鎘作為陽極與銀/氯化銀作為參考電極,發展出雙光電極系統應用於光電水分解中。實驗中發現將陽極與陰極同時照光的情形下,光電流高達2.39 mA,其光電流的表現較以鉑片當陰極的實驗 (1.88 mA) 高。由於硫化銅錫鋅具經濟潛力並擁有優良的光電特性應可替代鉑成為極具潛力的陰極材料。

並列摘要


Photoelectrochemical cells are the devices that can convert light to the other energies such as electricity and fuels. Solar-to-electricity cells, which are called solar cells, and solar-to-fuel cells, which are focused on the solar water splitting, have been intensely researched in the past decade because of their potential applications for the alternate energy. In this thesis, we have prepared photoelectrodes of photoelectrochemical cells and improved the solar-to-electrical conversion efficiency by optimizing photoelectrodes and developing device configuration. For quantum dots sensitized solar cells, phuotoanodes consisting of CdS sensitized titania nanorods with ZnS passivation layer are applied for solar cells. Single crystal TiO2 nanorods (TiNR) have been directly grown vertically on transparent conducting glass by a facile hydrothermal method and deposited with CdS and then a ZnS layer on the TiO2 surface via a successive ionic layer adsorption and reaction (SILAR) method. The effect of ZnS amount is studied in this system. Electrochemical results indicate that the photocurrent density (Jsc) is greatly improved by increasing the amount of ZnS. By optimizing the length of titania nanorods and the amount of CdS and ZnS, the best efficiency of 1.8% was achieved for solar cell under AM 1.5 G illumination with Jsc = 4.19 mA cm-2, Voc = 0.82 V and FF = 54%. To study the growth mechanism of TiO2 nanorods, we have prepared tin oxide hollow microspheres (SnHMs). The SnMHs, which is consisting of SnO2 nanoparticles with 20 – 40 nm of diameter, shows hirerarichical morphology. We subsequently have synthesized TiO2 nanorods on the SnMHs by the hydrothermal method as above paragraph. The TiNR-SnMHs composite materials are obtained and used as scattering layer materials for dye-sensitized solar cells. The solar-to-electricity conversion efficiency of 7.4% in the cells with TiNR-SnMHs scaterring layer is better than that of 6.5% without the scattering layer. We have also prepared TiNR by the microwave-assisted hydrothermal method. It costs only two hours to directly grow the TiO2 nanorods on the FTO substrate. Furthermore, we have obtained the TiO2 nanods possess different lengths and diameters by adjusting reactant concetraction. In order to enhance the dye adsorption, the TiO2 nanorods are etched by dipping in the H2O2 solution. The dye adsorption of the etched TiNR is similar to TiO2 nanoparticles (TiNP). The current densisty of the etched TiNR is even better than that of TiNP owing to the outstanding one-dimentioal structure that not only provides the direct electron pathway also reduces the recombination of electrons and holes. In the study of solar water splitting, Cu2ZnSnS4 (CZTS) has been fabricated via a solvothermal method and deposited on a fluorine-doped tin oxide glass to form a photocathode for highly efficient solar photoelectrochemical (PEC) water splitting. The photocurrents for solar PEC water splitting are measured by a system consisting CdS/TiO2 photoanode, CZTS photocathode, and Ag/AgCl reference electrode is nominated as two-photoelectrode system. A maximum current of 2.39 mA is achieved for the device with two-photoelectrode system, under AM 1.5G with 100 mW cm-2, which is larger than that of the device with a Pt cathode (1.88 mA). The low cost and outstanding optoelectronic properties of CZTS make it a promising cathode substitute for platinum in solar PEC water splitting.

參考文獻


16. Chidichimo, G.; Filippelli, L. “Organic Solar Cells: Problems and Perspectives.” International Journal of Photoenergy 2010, 2010, 1–11.
3. Fujishima, A., Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”, Nature 37 (1972) 238.
8. Grama, S. “A Survey of Thin-Film Solar Photovoltaic Industry & Technologies.” Massachusetts Institute of Technology, 2008.
10. Gratzel, M., ”Photoelectrochemical cells”, Nature 414, 2001, 338-344.
11. Lenzmann, F. O.; Kroon, J. M. 2007. ”Recent Advances in Dye-Sensitized Solar Cells.” Advances in OptoElectronics 2007: 1

延伸閱讀