透過您的圖書館登入
IP:18.218.184.214
  • 學位論文

應用疊層參數之複合材料複合式最佳化方法

An Optimization Method for Composites Using Lamination Parameters in a Hybrid Algorithm

指導教授 : 鄭榮和
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


傳統複合材料(如積層板、三明治結構)之最佳化設計方法,通常選定部分設計參數(如疊層數目、角度與順序以及表材、芯材厚度等)作為設計變數,並設定限制條件與目標函數後,直接代入最佳化演算法求解。如果目標函數不具有平滑、連續的梯度關係(如當疊層角度為設計變數時),則會因為以梯度演算法僅能求得局部最佳解,而通常使用演化式演算法,此方法雖然具有搜尋全域最佳解的能力,但過程中卻必須花費大量的演算次數。如果同時又因結構複雜而需要結合有限元素法求取限制條件及目標函數,則花費的時間將相當可觀。 本研究應用疊層參數(lamination parameter)提出一套複合材料複合式最佳化方法,將最佳化問題分為兩個步驟的子問題:第一步驟以疊層參數為設計變數,因其具凸性(convexity)且與目標函數呈現平滑、連續的梯度關係,因此適用梯度演算法求取最佳解;第二步驟以疊層角度為設計變數,使用演化式演算法逼近最佳解之疊層參數。由於僅於第一步驟需要使用有限元素法計算目標函數,因此將大幅減少收斂時間,提高求解效率。 本論文首先針對伸張與彎曲耦合的疊層參數,以二維擬合限制條件建立近似可行區域,並用於上述最佳化方法,以大幅限縮搜尋範圍而避免不存在之解。並依序透過分析方法準確性、最佳化方法準確性、效率與通用性之驗證,證實使用於積層板可較傳統方法減少約80%的有限元素計算次數。然後提出三明治勁度矩陣估算法,讓此方法可延伸應用於三明治結構。並驗證除了具有較高的求解效率外,將可能求得優於傳統方法之最佳解。 最後本研究以輕量化個人載具結構設計展示此最佳化方法所帶來之效益。

並列摘要


Usually traditional optimization method for composite materials’ (laminates, sandwich structure) started from choosing some design variables like ply number, ply angle, stacking sequence, and the thickness of face and core materials. Second, set up the constrains and objective functions. Finally, apply these design variables and constrains into the optimization algorithm to solve. If design variables and objective functions are not smoothly and monotonically related, such as ply angle as a variable, the evolutionary algorithms are usually adopted since the gradient-based optimization algorithms could only search for local optimal solution. Although the evolutionary algorithms have the ability to search for global solutions, a number of the iterations is needed. In the same time, if the evolutionary algorithms are combined with Finite Element Method to solve the constrains and objective functions due to the complexity of the problem, the time consumed would be considerable. This research proposes a hybrid algorithm for composites based on lamination parameters. The optimization problem is divided into two. First, set the ply number as variable and search for the optimal solution by gradient-based optimization algorithms. Second, set the ply angle as the variable and fit the optimal ply number by evolutionary algorithms. Since the Finite Element Analysis is induced in the first step, the consumed time to converge would be substantially reduced. This thesis first set up a feasible region for extension, bending, couple ply numbers by two-dimensional fitting inequalities. Then the feasible region is induced to the optimization method mentioned above to substantially limit the boundary to avoid the does not exist solutions. Additionally, the accuracy of analysis methods, the accuracy of optimization methods, the efficiency, and the versatility are sequentially verified and found out that about 80% of iteration in Finite Element computing is reduced when applying this method on laminates. Furthermore, the sandwich equivalent stiffness estimation is proposed so that this method could also apply to sandwich structure. Finally, the method is verified not only more efficient but also possible to find a better solution than the traditional method. Finally, an example is used to demonstrate the benefit the optimization method in this research: the structure design of the Personal Lightweight Electric Vehicle.

參考文獻


[64] 張智凱, "系統化複材三明治車體結構設計及最佳化方法," 博士論文, 機械工程學系研究所, 國立臺灣大學, 2007.
[89] 林逸祥, "燃料電池混合動力車複合材料車體結構設計方法之研究," 碩士論文, 機械工程學系研究所, 國立臺灣大學, 2006.
[91] 林俊志, "可量產性設計複材車體結構之研究," 碩士論文, 機械工程學系研究所, 國立臺灣大學, 2009.
[2] H. Ghiasi, D. Pasini, and L. Lessard, "Optimum stacking sequence design of composite materials Part I: Constant stiffness design," Composite Structures, vol. 90, pp. 1-11, 2009.
[3] T. P. Kicher and T. L. Chao, "Minimum weight design of stiffened fibre composite cylinders," J Aircraft, vol. 8, pp. 562-568, 1971.

延伸閱讀