透過您的圖書館登入
IP:3.23.99.64
  • 學位論文

開發低溫製程染料敏化太陽能電池之二氧化鈦漿料及電池模擬

Developing the TiO2 pastes for Low-Temperature Dye-Sensitized Solar Cells and Its Simulation

指導教授 : 何國川

摘要


近年來,染料敏化太陽能電池(以下簡稱染敏電池)的研究著力於使用可撓式奈米二氧化鈦電極,以便經由滾輪塗佈製造來降低量產化的成本,而輕量可撓式的染敏電池不僅可以貼附在透光物體表面,也可應用作為可攜式電力。   不同於傳統染敏電池,高溫二氧化鈦燒結製程不能適用在塑膠基材電極上,一般而言,低溫染敏電池的製程發展主要需要克服兩點主要挑戰,分別是二氧化鈦顆粒彼此間的不完全連結性以及成膜後殘餘有機物的去除,因此,為了在不使用高分子接合劑以及高溫燒結的情形下,依然能製備出具有好的顆粒連結性的二氧化鈦薄膜,提升低溫製程中二氧化鈦漿料的黏度是必須的。   在本研究中,我們藉由控制漿料中固體含量來製備不具有接合劑之二氧化鈦漿料,其中固體是由德國Degussa公司製作之P25(25 nm TiO2, 80% 銳鈦礦, 20% 金紅石)而溶劑則是由去離子水和異丁醇以容積比一比二混合而得,而二氧化鈦顆粒中之連結構造則是透過由其表面覆蓋之氫氧基在120 oC與鄰近氫氧基進行脫水(Dehydration)反應而構成,在P25含量為12.5 wt%時元件光電轉換效率可達到4.64%(開環電壓Voc = 0.74 V,短路電流密度Isc = 8.82 mA/cm2,填充因子FF = 0.71 ),之後更進一步研究加入氯化氫對漿料進行酸化之影響,藉由改變P25顆粒之表面電位(Zeta potential)來提高漿料之黏度,並在漿料pH值約為4左右可以達到5.12%(開環電壓Voc = 0.74 V,短路電流密度Isc = 10.16 mA/cm2,填充因子FF = 0.68)之元件光電轉換效率。此外,為了比較化學跟熱力燒結之影響,將以上漿料製成的元件分別在450 oC以及120 oC燒結半小時,並得到相近之元件效能。   最後,我們著力於研究低溫製程染敏電池的工作面積效應,此研究討論染敏電池的等效電路,並將元件之電化學阻抗頻譜分析以及電流-電壓特性曲線與等效電路作結合,染敏電池的工作面積與阻抗的關係經由EIS做釐清,而電流-電壓特性曲線則是由簡化後的等效電路電流-電壓方程式做擬合。工作面積由0.16 cm2至2.56 cm2的染敏電池元件之電流-電壓特性曲線用來求得下列電池參數,光生電流密度(iph)、飽和電流密度(isat)、交換電流密度(iex)等,以上參數在此研究中為電池工作面積之函數。我們也同時引入水利直徑(Hydraulic diameter)來預測不同形狀(長寬比)之工作面積的染敏電池效能,利用水利直徑以及電池參數的經驗方程式,我們可以預測不同長寬比工作面積之染敏電池效能。

並列摘要


Recently, research works have focused on developing flexible dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 electrodes. The realization of the cost reduction for DSSCs, in particular, can be achieved by using roll-to-roll printing process for electrode fabrications. Moreover, the lightweight flexible DSSC is attractive not only for its attachment on the existing transparent surfaces but also for applications on portable powers. Unlike the conventional DSSC, a high-temperature sintering process cannot be applied to prepare TiO2 films on plastic substrates. It is generally accepted that the development of low-temperature fabrication methods for DSSCs should overcome two main issues, namely, the incomplete necking of the TiO2 particles and the removal of the residual organics within the film. Therefore, to prepare thick TiO2 films with well-interconnected nanoparticles at low temperature, it is essential to increase the viscosity of the TiO2 colloid solution, without using a polymer binder or thermal sintering process.   In this study, we have prepared a binder-free TiO2 paste by controlling the weight ratio of solid powder to solvent. The binder-free TiO2 paste is mainly composed of P25 (Degussa, 25 nm TiO2, 80% Anatase, 20% Rutile) and a mixed solvent containing DI-water and tert-butanol (with a volume ratio of 1:2). The inter-particle connection of nanocrystalline TiO2 (necking reaction) is assumed to proceed by the dehydration of hydrogen-bonded network of TiO2 nanoparticles, whose surfaces are well-covered with hydroxy groups, heated 120 oC. With the addition of 12.5 wt% P25, the power conversion efficiency reached 4.64% (open-circuit voltage (Voc) = 0.740 V, short-circuit current density (isc) = 8.82 mA/cm2 and fill-factor (FF) = 0.71). Next, we use different amounts of HCl to change the zeta potential of the P25 particles to increase the viscosity of the paste. The best performance was found with the DSSC using the paste at around pH = 4, and the power conversion efficiency of 5.12% (Voc = 0.74 V, isc = 10.16 mA/cm2 and FF = 0.68) was obtained. Moreover, to compare the chemical and thermal sintering effects, the DSSCs were made with the same paste at different sintering temperatures, i.e., 450 oC and 120 oC, for 30 min. The results show the similar performances for the both cases.   Finally, we have focused on the study of the working area effects for the DSSCs with the mentioned low-temperature fabricating process. We have discussed the equivalent circuits for DSSCs, and related it to the electrochemical impedance spectroscopy (EIS) or current-voltage (I-V) characteristic curves. The relation between the resistance and the working area in DSSCs has been clarified by EIS, and the experimental I-V curves have been fitted by the simplifying I-V function obtained with an equivalent circuit. The cell performance of DSSCs with different working areas, from 0.16 cm2 up to 2.56 cm2, has been fitted by a function, from which we can extract the cell parameters, including the photo generation current density (iph), saturation current density (isat), exchange current density (iex), etc, from the experimental I-V curves. These parameters relate only to the working area of the cell. We have also introduced the hydraulic diameter to predict the performance of DSSCs with different working shapes (or aspect ratio). By using the hydraulic diameter and the experiential cell parameters, the performance of DSSCs with different aspect ratios can be predicted.

參考文獻


[1]B. O’Regan, and M. Gratzel, “A low-cost, high efficiency solar cell based on dye sensitized colloidal TiO2 film,” Nature 353 (1991) 737-740.
[3]S. Tanaka, “Performance simulation for dye-sensitized solar cells: toward high efficiency and solid state,” Jpn. J. Appl. Phys. 40 (2001) 97-107.
[4]D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for coverting solar radiation into electrical power,” J. Appl. Phys. 25 (1954) 676-677.
[5]M. A. Green, K. Emery, Y. Hishikawa, and Wilhelm Warta, “Solar Cell Efficiency Tables (Version 37),” Prog. Photovolt: Res. Appl. 19 (2011) 84-92.
[6]J. Zhao, A. Wang, M. A. Green, and F. F. Novel, “19.8% efficient “honeycomb“ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73 (1998) 1991-1993.

延伸閱讀