透過您的圖書館登入
IP:3.142.55.75
  • 學位論文

薄壁縮狀石墨鑄鐵之高溫熱疲勞性質研究

Study on the High Temperature Thermal Fatigue Property of Thin-Section Compacted Graphite Cast Iron

指導教授 : 潘永寧教授

摘要


本研究的主要目的為建立薄壁縮墨鑄鐵之鑄造技術,鑄件之厚度標的為2~3mm,研究上探討一些相關製程及冶金參數對於顯微組織(包含縮化率、石墨數目、肥粒鐵、波來鐵、碳化物)以及熱疲勞性質之影響,以期獲致優良薄壁縮墨鑄鐵之最佳製程參數條件。 實驗結果顯示,欲得到有效的縮化處理,需將含縮化劑之鐵罐壓扁,並固定於澆斗底部,以避免澆鑄時上浮,如此可避免縮化不完全及不良石墨型態出現。在固定C(2.88%)及Si(5.0%)成分下,縮化劑處理量在0.3%應可得到縮狀石墨鑄鐵。 在相同C、Si含量下,2mm鑄件之石墨數目均高於3mm鑄件,對於縮化率而言,其3mm鑄件之縮化率均高於2mm鑄件。改變造模材料(化學模、濕砂模),對於石墨數目與縮化率之影響不大。在固定C(3.0%)及處理條件下(縮化劑0.3%、接種劑0.15%),對任一厚度、造模材料而言,石墨數目及肥粒鐵量均隨Si含量之增加而逐漸增加,在約4.6%Si達到最高值。在相同Si含量下,影響肥粒鐵量的參數以鑄件厚度最大,造模材料次之。 在固定Si(3.0%)時,縮化劑種類對於石墨數目、肥粒鐵之影響而言,以含Ti縮化劑處理時,會明顯降低鑄件斷面敏感度,且以含Ti縮化劑處理之鑄件其石墨數目及肥粒鐵均高於以鎂-稀土縮化劑處理之鑄件。 熱疲勞試驗之結果顯示,在固定C、Si成分及縮化率條件下,若肥粒鐵及石墨數目差異不大,熱疲勞次數隨肥粒鐵及石墨數目之增加而增加,但石墨數目與肥粒鐵差異大時,則兩者對於熱疲勞性質呈現交互影響。又,將石墨數目及肥粒鐵固定後,其熱疲勞次數隨縮化率之增加而增加,超過一定值以後則顯著降低。 在固定C(3.0%)及處理條件(縮化劑0.3%、接種劑0.15%)之條件下(No.11.12.13),熱疲勞次數隨Si含量之增加而增加,且其變化趨勢與石墨數目及肥粒鐵對Si量之變化趨勢一致,但對於縮化率而言並無明確的相關。此外,添加約0.5% Mo,對於任一鑄件厚度、造模材料而言,皆明顯提昇熱疲勞性質。 由熱疲勞裂紋之SEM觀察,可以發現二次石墨氧化燒失而形成之空孔,使晶界強度減弱,應力容易集中。另,裂紋形成後,在裂紋界面容易氧化,高溫下氧化層與基材間之結合力減弱,造成氧化層與金屬基地分離,產生氧化起皮現象。

並列摘要


The primary purpose of this research is to establish the optimal conditions for the production of thin-section (2∼3 mm) compacted graphite cast irons for high temperature applications (up to 800℃). Experimentally, the microstructures (include vermicularity, graphite count, and matrix structure) and thermal fatigue property will be evaluated and correlated with alloy design and casting parameters, such as section size and molding material. The results show that, for a fixed C content of some 2.88% and Si content of some 5.0%, an addition of about 0.3% compactizing alloys can attain compacted graphite structure. Regarding the effects of casting parameters on microstructure, the results show that for fixed C and Si contents higher graphite counts can be obtained in castings with a thinner section, while, higher vermicularity can be obtained in castings with a thicker section. However, the effect of molding material on graphite count and vermicularity are not significant. For a fixed C content (3.0%) and treatment conditions (compactizer 0.3%、inoculant 0.15%), both the %ferrite and graphite count increase with increasing Si content, reach maxima at around 4.6% Si. The result about thermal fatigue show that, for fixed C and Si content and vermicularity, thermal fatigue cycles to failure increases with increasing %ferrite and graphite count. Further, under the conditions of fixed graphite count and ferrite content, thermal fatigue cycle increases first with increasing vermicularity, reaches maximum, and then decreases with further increases in vermicularity. Fixed C content of 3.0% and constant treatment conditions (compactizer 0.3%, inoculant 0.15%), the thermal fatigue cycle increases with increasing Si content. Similar trends have also been obtained for graphite count and %ferrite. Furthermore, adding some 0.5% Mo can significantly increase thermal fatigue cycles to failure. Finally, the fracture mechanism during the thermal fatigue test had also been assessed in this study.

參考文獻


18. 張宏源,“薄壁球狀石墨鑄鐵之高溫熱疲勞性質研究”, 國立台灣大學機械所碩士論文,2008。
7. C. P. Cheng, S. M. Chen, T. S. Lui and L. H. Chen, “High-Temperature Deformation and Thermal Cranking of Ferritic Spheroidal Graphite Cast Iron,” Metallurigal and Material Trans. A, vol.28A, pp. 325-333, 1997.
23. I. Minkoff,The Physical Metallurgy of cast iron,WILEY
34. C. R. Loper and R. W. Heine., “Variables Influencing Graphitization and Carbon Flotation,” Gray Iron News, 1963.
54. Y. J. Park, R. B. Gundlach, R. G. Thomas, “Thermal Fatigue Resistance of Gray and Compacted Graphite Irons”, AFS Trans.,vol.93, pp.415-422, 1985.

被引用紀錄


張志宏(2011)。冶金參數對於薄壁縮狀石墨鑄鐵熱疲勞性質之影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.10811

延伸閱讀