透過您的圖書館登入
IP:18.119.133.228
  • 學位論文

應用有限元素法模擬壓電元件與超音波波傳

Simulation of Piezoelectric Device and Ultrasonic Wave using Finite Element Analysis

指導教授 : 陳俊杉

摘要


本論文透過有限元素法對壓電元件進行模擬與設計分析。主要應用於三方面:壓電元件的導納模擬、距離感測器指向性模擬與醫用高功率燒灼器模擬。 在壓電元件的導納模擬方面,本論文提出一個新的方法以有限元素法來模擬壓電元件的機械能量耗損。其中機械能量耗損可藉由迭代法所求出之複數材料參數被考慮進壓電元件中。並利用QR分解法將欲求之任意形狀元件的能量耗損分析成9種基本模態。且因為這些基本模態的能量耗損因子已知,故可將其轉換成總體等效黏滯阻尼比,如此即可直接被一般的有限元素動力分析考慮進模擬系統中。本文並利用實驗與理論公式驗證此數值方法之結果,證實此方法的確可提供準確的機械能量損失因子,並模擬出相當精準的導納頻率響應曲線。 在距離感測器指向性模擬方面,本文針對感測器發波面的結構邊界條件對音波半衰角的影響進行分析。一般車用距離感測器的要求為垂直面半衰角小,水平面半衰角大的不對稱指向特性。由結果可知發波面邊界條件類似為固定端的狀況下半衰角最大;鉸支承次之;自由端半衰角最小。利用以上結果,本文將市售距離感測元件的垂直方向外殼挖洞,使發波面結構邊界條件更類似於一個自由端,由模擬結果看來,此舉可使元件指向性的不對稱約增加50%。但邊界條件過度趨近於自由端,卻會使音波能量降低,減少感測距離。為了顧及感測範圍。本文進一步透過改變洞長參數,求得最佳洞長約為0.4倍之元件直徑。 在醫用高功率燒灼器模擬方面。一般醫用燒灼器的需求為-3dB壓力值所圍的面積長寬比必須大,因此本文建製燒灼器元件之模型,瞭解其振動模態與共振頻率,再以實驗證實數值模擬的正確性。並進一步針對相同元件面積下,探討改變曲率半徑及張角對於燒灼面積的影響。由結果得知,曲率半徑愈小張角愈大會導致燒灼面積減小、長寬比增加以及壓力主峰值的提高。 本論文成功地透過有限元素法精準模擬壓電元件的能量耗損,並找出距離感測元件設計最佳解,以及預測醫療燒灼器幾何變化所造成的影響。不僅如此,研究中模擬的結果能在壓電元件實作之前,即提供一定程度的分析與預測能力。在未來研究中更可進一步探討壓電片在元件中的配置與效率間的關係,以及超音波在不同介質中傳遞的行為,拓展模擬輔助設計之功能性。

並列摘要


In this thesis, we analyze and design the piezoelectric device by finite element simulation. The modeling and simulation have been applied in three subjects: admittance of piezoelectric device, directivity of distance sensor, and high intensity focused ultrasound( HIFU). For admittance of piezoelectric device, a methodology to model mechanical losses of piezoelectric devices by the finite element analysis is presented. Complex parts of the material constants are extracted using an iterative method. Mechanical losses of piezoelectric devices are taken into account through these complex constants. A scheme using the QR factorization is developed to decompose mechanical losses of an arbitrary-shaped device into fundamental modes. These losses are then transformed into an equivalent viscous damping ratio in a standard finite element dynamics analysis. The proposed method enables us to obtain a reliable mechanical loss factor. Numerical results demonstrate that the proposed method can predict measured admittance spectra reasonably well. For directivity of distance sensor, we analyze the effect of different boundary conditions to the half decay angle. The goal for vehicle short-range sensing is that the half decay angle in the vertical direction has to be less than that in horizontal. Our simulation reveals that the half decay angle of free end boundary condition is much less than that of simple-supported and fixed ends. With such design criterion in mind, we further improve the distance sensor device by cutting a square hole in the vertical direction to mimic the free-end boundary condition. This procedure can improve the asymmetry of directivity up to 50%. However, it shortens the detect region. Therefore, we change the length of cave and obtain an optimized value, 0.4 times of device diameter, for the directivity and detect region. The HIFU application requires the length to width ratio of -3dB focal area to reach a maximum value. To this end, we construct the HIFU simulation model to find out the relations between the modal shape and resonance frequency, and compare the numerical result with experimental measurements. Furthermore, we change geometric focal length and angle in the same active area to explore the effect of -3dB focal area. The result reveals that small geometric focal length and large angle may decrease the -3dB focal area, and increase length to width ratio and the pressure magnitude of main lobe. In conclusion, we have successfully shown the feasibility of using finite element simulation to analyze the behavior of piezoelectric devices. Through the aforementioned simulation, we can predict the energy loss of piezoelectric material and provide a guideline for design of distance sensor and HIFU.

參考文獻


Alemany, C., L. Pardo, B. Jiménez, F. Carmona, J. Mendiola, and A. M. González (1994), “Automatic iterative evaluation of complex material constants in piezoelectric ceramics,” J. Phys. D: Appl. Phys., 27, 148-155.
Alemany, C., A. M. González, L. Pardo, B. Jiménez, F. Carmona, and J. Mendiola, J. (1995). “Automatic determination of complex constants of piezoelectric lossy materials in the radial mode,” J. Phys. D: Appl. Phys., 28, 945-956.
Algueró, M., C. Alemany, and L. Pardo (2004), “Method for obtaining the full set of linear elastic, mechanical and electromechanical coefficients and all related losses of a piezoelectric ceramic,” J. Am. Ceram. Soc., 87[2], 209-215.
Bathe, K. J. (1996), Finite Element Procedures, Prentice-Hall, Englewood Cliffs.
Chopra, A. K. (2001), Dynamics of structures: theory and applications to earthquake engineering, 2nd Ed., Prentice Hall, New York.

被引用紀錄


溫鈺翔(2014)。可分享土木領域實驗資料、模擬結果與模型的社群平台設計〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.01901
鄭志強(2009)。具空間異向性之喇叭之理論與實驗研究〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.02231
Lin, C. Y. (2008). 單體雙源超音波測距感應器之指向性研究 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2008.01966
簡偉勝(2007)。應用混合法量測壓電材料常數並探討其動態特性與溫度效應〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.10569
胡智凱(2007)。封閉式超音波感測器之設計與有限元素模擬〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.01032

延伸閱讀