Approximate Bayesian Computation for Copula Estimation

Authors

  • Clara Grazian Università di Roma “La Sapienza”
  • Brunero Liseo Università di Roma “La Sapienza”

DOI:

https://doi.org/10.6092/issn.1973-2201/5827

Keywords:

ABC algorithms, Multivariate distributions, Partially specified models

Abstract

We describe a simple method for making inference on a functional of a multivariate distribution. The method is based on a copula representation of the multivariate distribution and it is based on the properties of an Approximate Bayesian Monte\,Carlo algorithm, where the proposed values of the functional of interest are weighed in terms of their empirical likelihood. This method is particularly useful when the 'true' likelihood function associated with the working model is too costly to evaluate or when the working model is only partially specified.

References

D. ARDIA, L. HOOGERHEIDE (2010). Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations. The R Journal, 2, no. 2, pp. 41–47.

P. CHAUSSÉ (2010). Computing Generalized Method of Moments and Generalized Empirical Likelihood with R. Journal of Statistical Software, 11, no. 34, pp. 1–35.

U. CHERUBINI, E. LUCIANO, W. VECCHIATO (2004). Copula Methods in Finance. John Wiley & Sons, New York, San Francisco, Calif.

V. R. CRAIU, A. SABETI (2012). In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes. J. Multivariate Anal., 110, pp. 106–120.

C. GENEST, A.-C. FAVRE (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, pp. 347–368.

C. GENEST, K. GHOUDI, L. RIVEST (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82, no. 3, pp. 543–552.

J. GEWEKE (1993). Bayesian treatment of the independent Student-t linear model. J. Appl. Econometr., S1, no. 8, pp. S19–S40.

J. HE, H. LI, A. C. EDMONDSON, D. L. RADER, M. LI (2012). A Gaussian copula approach for the analysis of secondary phenotypes in casecontrol genetic association studies. Biostat., 13, no. 3, pp. 497–508.

P. HOFF (2007). Extending the rank likelihood for semiparametric copula estimation. The Annals of Applied Statistics, 1, no. 1, pp. 265–283.

V. N. HUYNH, V. KREINOVICH, S. SRIBOONCHITTA (2015). Modeling Dependence in Econometrics . Springer, New York.

H. JOE (2014). Dependence modelling with copulas, Monographs on Statistics and Applied Probability, 134. Chapman & Hall–CRC Press, London.

J. MARIN, P. PUDLO, C. ROBERT, R. RYDER (2012). Approximate Bayesian computational methods. Statistics and Computing, 6, no. 22, pp. 1167–1180.

K. MENGERSEN, P. PUDLO, C. ROBERT (2013). Bayesian computation via empirical likelihood. Proc. of the National Academy of Sciences, 4, no. 110, pp. 1321–1326.

A. MIN, C. CZADO (2010). Bayesian Inference for Multivariate Copulas using Pair- copula Constructions. Journal of Financial Econometrics, 4, no. 8, pp. 511–546.

D. OH, A. PATTON (2013). Simulated Method of Moments Estimation for Copula-Based Multivariate Models. J. Amer. Stat. Assoc., 502, no. 108, pp. 689–700.

A. OWEN (2010). Empirical Likelihood. Chapman & Hall/CRC Press, New York (USA).

G. RESCONI, I. LICATA (2015). Entropy and Copula Theory in Quantum Mechanics. In Proceedings of the 1st Int. Electron. Conf. Entropy Appl., 3{21 November 2014, Sciforum Electronic Conference Series.

D. RUBIN (1988). Using the SIR algorithm to simulate posterior distributions (with discusion). In Bayesian Statistics 3 J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith, Eds., Oxford University Press, Oxford (UK), Bayesian Statistics, pp. 395–402.

R. SCHEFZIK, T. L. THORARINSDOTTIR, T. GNEITING (2013). Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling. Statist. Sci., 28, no. 4, pp. 616–640.

S. SCHENNACH (2005). Bayesian exponentially tilted empirical likelihood. Biometrika, 1, no. 92, pp. 31–46.

C. SCHOLZEL, P. FRIEDERICHS (2008). Multivariate non-normally distributed random variables in climate research: introduction to the copula approach. Nonlinear Processes in Geophysics, 15, pp. 761–772.

R. D. S. SILVA, H. F. LOPES (2008). Copula, marginal distributions and model selection: a Bayesian note. Stat. Comput., 18, no. 3, pp. 313–320.

S. SISSON, Y. FAN (2011). Likelihood-free MCMC. In Handbook of Markov chain Monte Carlo, Chapman & Hall/CRC, London, Handb. Mod. Stat. Methods, pp. 313–335.

M. SKLAR (1959). Fonctions de repartition a n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris, 8, pp. 229–231.

M. SMITH (2013). Bayesian Approaches to Copula Modelling. In Hierarchical Models and MCMC: A Tribute to Adrian Smith, P. Damien, P. Dellaportas, N. Polson, and D. Stephens (Eds), Oxford University Press, Oxford (UK), Bayesian Statistics, pp. 395–402.

M. SMITH, Q. GAN, R. KOHN (2012). Modelling dependence using skew-t copulas: Bayesian inference and applications. Journal of Applied Econometrics, 3, no. 27, pp. 500–522.

J. WU, X. WANG, S. WALKER (2014). Bayesian Nonparametric Inference for a Multivariate Copula Function. Methodol. Comput. Appl. Probab., 1, no. 16, pp. 747–763.

Downloads

Published

2015-03-31

How to Cite

Grazian, C., & Liseo, B. (2015). Approximate Bayesian Computation for Copula Estimation. Statistica, 75(1), 111–127. https://doi.org/10.6092/issn.1973-2201/5827

Issue

Section

Articles