Taylor & Francis Group
Browse
gcoo_a_1328736_sm0128.doc (62 kB)

NMR and theoretical study on the linking properties of peroxovanadium(V) complexes with the 3-aminomethyl-pyridine derivatives

Download (62 kB)
journal contribution
posted on 2017-05-10, 05:23 authored by Wen Xia, Jie Zhang, Xianyong Yu, Lei Yang, Xiaofang Li

To understand the substitution effects of 3-aminomethyl-pyridine on the reaction equilibrium, the interactions between a series of 3-aminomethyl-pyridine derivatives and peroxovanadium(V) complex [OV(O2)2(D2O)]/[OV(O2)2(HOD)] in solution were explored by the combined use of multinuclear (1H, 13C, and 51V) magnetic resonance spectroscopy together with HSQC in 0.15 M NaCl ionic medium for mimicking the physiological conditions. Some direct NMR data are given for the first time. The relative reactivity among the 3-aminomethyl-pyridine derivative ligands are N-(pyridin-3-ylmethyl)acetamide (1) ≈ N-(pyridin-3-ylmethyl)propionamide (2) > N-(pyridin-3-ylmethyl)pivalamide (3) > t-butyl(pyridin-3-ylmethyl)carbamate (4). The competitive coordination results in the formation of a series of new six-coordinate peroxovanadium species [OV(O2)2L] (L = 14). The results of density functional calculations indicated that the solvation effects play an important role in these reactions, providing a reasonable explanation on the relative reactivity of the 3-aminomethyl-pyridine derivatives.

History