The Royal Society
Browse

Supplementary material from "Rainwater-driven microbial fuel cells for power generation In the remote areas"

Posted on 2021-11-15 - 14:18
The possibility of using rainwater as a sustainable anolyte in an air-cathode microbial fuel cell (MFC) is investigated in this study. The results indicate that the proposed MFC can work within a wide temperature range (from 0 to 30°C), and under aerobic or anaerobic conditions. However, the rainwater season has a distinct impact. Under anaerobic conditions, the summer rainwater achieves a promised open circuit potential (OCP) of 553 ± 2 mV without addition of nutrients at the ambient temperature, while addition of nutrients leads to increase the cell voltage to 763 ± 3 and 588 ± 2 mV at 30°C and ambient temperature, respectively. The maximum OCP for the winter rainwater (492 ± 1.5 mV) is obtained when the reactor is exposed to the air (aerobic conditions) at ambient temperature. Furthermore, the winter rainwater MFC generates a maximum power output of 7 ± 0.1 mWm−2 at a corresponding current density value of 44 ± 0.7 mAm−2 at 30°C. While, at the ambient temperature, the maximum output power is obtained with the summer rainwater (7.2 ± 0.1 mWm−2 at 26 ± 0.5 mAm−2). Moreover, investigation of the bacterial diversity indicates that Lactobacillus spp. is the dominant electroactive genus in the summer rainwater, while in the winter rainwater, Staphylococcus spp. is the main electroactive bacteria. The cyclic voltammetry analysis confirms that the electrons are delivered directly from the bacterial biofilm to the anode surface and without mediators. Overall, the study opens a new avenue for using a novel sustainable type of MFC derived by rainwater.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Royal Society Open Science

AUTHORS (6)

Mohamed Taha Amen
Ahmed S. Yasin
Mohamed I. Hegazy
Mohammad Abu Hena Mostafa Jamal
Seong-Tshool Hong
Nasser A. M. Barakat
need help?