二维大地电磁各向异性参数对视电阻率的影响研究

蔡义宇, 肖调杰, 宋滔. 二维大地电磁各向异性参数对视电阻率的影响研究[J]. 地球物理学进展, 2020, 35(1): 86-93. doi: 10.6038/pg2020CC0478
引用本文: 蔡义宇, 肖调杰, 宋滔. 二维大地电磁各向异性参数对视电阻率的影响研究[J]. 地球物理学进展, 2020, 35(1): 86-93. doi: 10.6038/pg2020CC0478
CAI Yi-yu, XIAO Tiao-jie, SONG Tao. Influence of two-dimensional magnetotelluric anistropic parameters on apparent resistivities[J]. Progress in Geophysics, 2020, 35(1): 86-93. doi: 10.6038/pg2020CC0478
Citation: CAI Yi-yu, XIAO Tiao-jie, SONG Tao. Influence of two-dimensional magnetotelluric anistropic parameters on apparent resistivities[J]. Progress in Geophysics, 2020, 35(1): 86-93. doi: 10.6038/pg2020CC0478

二维大地电磁各向异性参数对视电阻率的影响研究

详细信息
    作者简介:

    蔡义宇,男,1992年生,硕士研究生,主要从事地球电磁正演数值模拟研究.E-mail:caiyiyu@mail.gyig.ac.cn

    通讯作者: *肖调杰,男,1991年生,博士研究生,主要从事地球电磁正反演数值模拟研究.E-mail:xiaotiaojie16@mails.ucas.ac.cn
  • 中图分类号: P631

Influence of two-dimensional magnetotelluric anistropic parameters on apparent resistivities

More Information
    Corresponding author: XIAO Tiao-jie
  • 大地电磁法是广泛应用于深部地质结构探测、油气和矿产资源勘查等领域的一种地球物理方法.电性各向异性对电磁观测数据有很大影响,但介质各向异性参数对不同模式视电阻率的影响还较少有较为系统的研究.本文基于Maxwell方程组,推导了二维大地电磁场在任意各向异性介质中电场和磁场相互耦合的变分方程,结合有限单元法及并行计算编写了二维大地电磁任意各向异性正演程序,采用三角形网格剖分.验证程序正确性后,以倾斜板状体作为模型来研究三个主轴电阻率及三个旋转欧拉角和四种模式的视电阻率之间的关系.结果表明,主轴各向异性时,xy模式视电阻率几乎只受x方向电阻率影响,yx模式视电阻率主要受y方向电阻率影响,但同时也受z方向电阻率一定影响;三个欧拉角中只有倾角不为零时,yx模式视电阻率受倾角大小的影响较大,xy模式视电阻率几乎不受倾角的影响;只有走向角不为零时,四种模式的视电阻率同时受x、y两个主轴电阻率和走向角的大小的影响.
  • 加载中
  • [1]

    Chen R Z, An Z G, Yang L Y.2018. Fast OCCAM inversion for two-dimensional magnetotelluric based on MATLAB language[J]. Progress in Geophysics (in Chinese), 33(4): 1461-1468, doi: 10.6038/pg2018BB0518.

    [2]

    Feucht D W, Sheehan A F, Bedrosian P A.2017. Magnetotelluric Imaging of Lower Crustal Melt and Lithospheric Hydration in the Rocky Mountain Front Transition Zone, Colorado, USA[J]. Journal of Geophysical Research: Solid Earth, 122(12): 9489-9510, doi: 10.1002/2017JB014474.

    [3]

    Gao C K, Tang J T, Wang Y, et al.2009. The test research of high frequency MT based on RRI inversion in exploring deep and limbic minerals[J]. Progress in Geophysics (in Chinese), 24(1): 309-314.

    [4]

    Heise W, Caldwell T G, Bibby H M, et al.2006. Anisotropy and phase splits in magnetotellurics[J]. Physics of the Earth and Planetary Interiors, 158(2-4): 107-121, doi: 10.1016/j.pepi.2006.03.021.

    [5]

    Heise W, Pous J.2003. Anomalous phases exceeding 90° in magnetotellurics: anisotropic model studies and a field example[J]. Geophysical Journal International, 155(1): 308-318, doi: 10.1046/j.1365-246X.2003.02050.x.

    [6]

    Hu X Y, Huo G P, Gao R, et al.2013.The magnetotelluric anisotropic two-dimensional simulation and case analysis[J]. Chinese Journal of Geophysics (in Chinese), 56(12): 4268-4277. doi:10.6038/cjg20131229.

    [7]

    Hui X, Wu X P.2018. Two dimensional modeling of magnetotelluric in anisotropic media using unstructured finite element method[J]. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 40(4): 468-478, doi: 10.3969/j.issn.1001-1749.2018.04.09.

    [8]

    Huo G P, Hu X Y, Huang Y F, et al.2015. MT modeling for two-dimensional anisotropic conductivity structure with topography and examples of comparative analyses[J]. Chinese Journal of Geophysics (in Chinese), 58(12): 4696-4708, doi:10.6038/cjg20151230.

    [9]

    Li Y, Hu X Y, Jin G X, et al.2010. Research of 1-D magnetotelluric parallel computation based on MPI[J]. Progress in Geophysics (in Chinese), 25(5): 1612-1616, doi: 10.3969/j.issn.1004-2903.2010.05.012.

    [10]

    Li Y G.2002. A finite-element algorithm for electromagnetic induction in two-dimensional anisotropic conductivity structures[J]. Geophysical Journal International. 148(3): 389-401.

    [11]

    Li Y G, Pek J.2008. Adaptive finite element modelling of two-dimensional magnetotelluric fields in general anisotropic media[J]. Geophysical Journal International, 175(3): 942-954.

    [12]

    Pek J, Santos F A M.2002. Magnetotelluric impedances and parametric sensitivities for 1-D anisotropic layered media[J]. Computers & Geosciences, 28(8): 939-950.

    [13]

    Pek J, Verner T.1997. Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media[J]. Geophysical Journal International, 128(3): 505-521, doi: 10.1111/j.1365-246X.1997.tb05314.x.

    [14]

    Qin L J, Yang C F.2016. Analytic magnetotelluric responses to a two-segment model with axially anisotropic conductivity structures overlying a perfect conductor[J]. Geophysical Journal International, 205(3): 1729-1739, doi: 10.1093/gji/ggw109.

    [15]

    Qin L J, Yang C F, Chen K.2013. Analytic solution to the magnetotelluric response over anisotropic medium and its discussion[J]. Science China Earth Sciences, 56(9): 1607-1615, doi: 10.1007/s11430-013-4585-6.

    [16]

    Reddy I K.1975. Magnetotelluric Response of Laterally Inhomogeneous and Anisotropic Media[J]. Geophysics, 40(6): 1035-1045, doi: 10.1190/1.1440579.

    [17]

    Wang M, Chen S, Tan H D, et al.2017. Study on parallel algorithm based on inversion of 2D magnetotelluric[J]. Progress in Geophysics (in Chinese), 32(5): 2085-2090, doi: 10.6038/pg20170531.

    [18]

    Wang N, Zhao S S, Hui J, et al.2016. Three-dimensional audio magnetotelluric sounding of coal-bed methane reservoirs in southern Qinshui basin[J]. Progress in Geophysics (in Chinese), 31(6): 2664-2676, doi:10.6038/pg20160642.

    [19]

    Xiao T J, Huang X Y, Wang Y.2019. 3D MT modeling using the T-Ω method in general anisotropic media[J]. Journal of Applied Geophysics, 160: 171-182, doi: 10.1016/j.jappgeo.2018.11.012.

    [20]

    Xiao T J, Liu Y, Song T, et al.2015. A study on 3D scalar finite element forward and MPI parallel calculation[J]. Acta Mineralogica Sinica (in Chinese), (s1): 246-247.

    [21]

    Xiao T J, Liu Y, Wang Y, et al.2018. Three-dimensional magnetotelluric modeling in anisotropic media using edge-based finite element method[J]. Journal of Applied Geophysics, 149: 1-9. doi: 10.1016/j.jappgeo.2017.12.009.

    [22]

    Xu S Z, Zhao S K.1985. Finite element method for the solution of two-dimensional anisotropic geoelectric cross-section magnetic-field[J]. Acta Seismolo-gica Sinica (in Chinese), 7(1): 82-92.

    [23]

    Ye G F, Wang H, Guo Z Q, et al.2013. Data acquisition and processing technology of long-period magnetotellurics[J]. Progress in Geophysics (in Chinese), 28(3): 1219-1226, doi: 10.6038/pg20130313.

    [24]

    Zyserman F I, Santos J E.2000. Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling[J]. Journal of Applied Geophysics, 44(4): 337-351.

    [25]

    陈润滋, 安志国, 杨良勇. 2018. 基于MATLAB语言的二维大地电磁OCCAM快速反演[J]. 地球物理学进展, 33(04): 1461-1468, doi: 10.6038/pg2018BB0518.

    [26]

    高才坤, 汤井田, 王烨, 等. 2009. 基于RRI反演的高频大地电磁测深在深边部矿产勘探中的试验研究[J]. 地球物理学进展, 24(1): 309-314.

    [27]

    胡祥云, 霍光谱, 高锐, 等. 2013. 大地电磁各向异性二维模拟及实例分析[J]. 地球物理学报, 56(12): 4268-4277, doi: 10.6038/cjg20131229.

    [28]

    惠鑫, 吴小平. 2018. 电阻率各向异性介质大地电磁二维非结构有限元数值模拟[J]. 物探化探计算技术, 40(4): 468-478, doi: 10.3969/j.issn.1001-1749.2018.04.09.

    [29]

    霍光谱, 胡祥云, 黄一凡, 等. 2015. 带地形的大地电磁各向异性二维模拟及实例对比分析[J]. 地球物理学报, 58(12): 4696-4708, doi: 10.6038/cjg20151230.

    [30]

    李焱, 胡祥云, 金钢燮, 等. 2010. 基于MPI的一维大地电磁并行计算研究[J]. 地球物理学进展, 25(5): 1612-1616, doi: 10.3969/j.issn.1004-2903.2010.05.012.

    [31]

    汪茂, 陈霜, 谭捍东, 等. 2017. 基于大地电磁二维反演的MPI并行算法研究[J]. 地球物理学进展, 32(05): 2085-2090, doi: 10.6038/pg20170531.

    [32]

    王楠, 赵姗姗, 惠健, 等. 2016. 沁水盆地南部煤层气藏三维音频大地电磁探测[J]. 地球物理学进展, 31(6): 2664-2676, doi: 10.6.38/pg20160642.

    [33]

    肖调杰, 刘云, 宋滔, 等. 2015. 大地电磁三维标量有限元正演及MPI并行计算[J]. 矿物学报, (s1): 246-247.

    [34]

    徐世浙, 赵生凯. 1985. 二维各向异性地电断面大地电磁场的有限元法解法[J]. 地震学报, 7(1): 82-92.

    [35]

    叶高峰, 王辉, 郭泽秋, 等. 2013. 长周期大地电磁测深数据采集及处理技术[J]. 地球物理学进展, 38(3): 1219-1226, doi: 10.6038/pg20130313.

  • 加载中
计量
  • 文章访问数:  1019
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2019-05-13
修回日期:  2019-12-11
刊出日期:  2020-02-20

目录