基于深度学习卷积神经网络的地震波形自动分类与识别

赵明, 陈石, Dave Yuen. 2019. 基于深度学习卷积神经网络的地震波形自动分类与识别. 地球物理学报, 62(1): 374-382, doi: 10.6038/cjg2019M0151
引用本文: 赵明, 陈石, Dave Yuen. 2019. 基于深度学习卷积神经网络的地震波形自动分类与识别. 地球物理学报, 62(1): 374-382, doi: 10.6038/cjg2019M0151
ZHAO Ming, CHEN Shi, Dave Yuen. 2019. Waveform classification and seismic recognition by convolution neural network. Chinese Journal of Geophysics (in Chinese), 62(1): 374-382, doi: 10.6038/cjg2019M0151
Citation: ZHAO Ming, CHEN Shi, Dave Yuen. 2019. Waveform classification and seismic recognition by convolution neural network. Chinese Journal of Geophysics (in Chinese), 62(1): 374-382, doi: 10.6038/cjg2019M0151

基于深度学习卷积神经网络的地震波形自动分类与识别

  • 基金项目:

    国家自然科学基金(41774090, 41804047)和中国地震局地球物理研究所基本科研业务专项(DQJB1801)为本研究提供资助

详细信息
    作者简介:

    赵明, 男, 博士, 助理研究员, 主要从事地震学方面的研究.E-mail:mzhao@cea-igp.ac.cn

    通讯作者: 陈石, 男, 研究员, 主要从事地球内部物理学研究.E-mail:chenshi@cea-igp.ac.cn
  • 中图分类号: P315

Waveform classification and seismic recognition by convolution neural network

More Information
  • 发展高效、高精度、普适性强的自动波形拾取算法在地震大数据时代背景下显得越来越重要.波形自动拾取算法的主要挑战来自如何适应不同区域的不同类型地震事件的分类与筛选.本文针对地震事件-噪音分类这一问题, 使用13839个汶川地震余震事件建立数据集, 应用深度学习卷积神经网络(CNN)方法进行训练, 并用8900个新的汶川余震事件作为检测数据集, 其训练和检测准确率均达到95%以上.在对连续波形的检测中, CNN方法在精度和召回率上优于STA/LTA和Fbpicker传统方法, 并能找出大量人工挑选极易遗漏的微震事件.最后, 我们应用训练好的最优模型对选自全国台网的441个台站8天的连续波形数据进行了识别、到时挑取及与参考地震目录关联, CNN检出7016段波形, 用自动挑选算法拾取到1380对P, S到时, 并与540个地震目录事件成功关联, 对1级以上事件总体识别准确率为54%, 二级以上为80%, 证明了CNN模型具有泛化能力, 初步展示了CNN在发展兼具效率、精度、普适性算法, 实时地震监测等应用上具有巨大潜力.

  • 加载中
  • 图 2 

    数据预处理前后的训练过程

    Figure 2. 

    Different train process before and after data preprocessing

    图 1 

    卷积神经网络结构

    Figure 1. 

    The structure of convolutional neural network

    图 3 

    CNN连续波形检测与专家样本示例

    Figure 3. 

    An example of CNN continuous waveform detection and the expert selected events

    图 4 

    台站与地震震中分布

    Figure 4. 

    Distribution of stations and earthquakes

    图 5 

    对CNN识别的地震事件进行P(红线), S震相(蓝线)自动挑取

    Figure 5. 

    P (red line) and S phase (blue line) are automatically picked up for the seismic events identified by CNN

    表 1 

    CNN与Fbpicker、STA/LTA算法对比

    Table 1. 

    The comparison of CNN, Fbpicker and STA/LTA algorithm

    方法 Pe Re Tp Fp Fn
    CNN 47.9% 94.5% 1803 1960 98
    STA/LTA 29% 85% 1615 3954 286
    fbpicker 36% 88% 1672 2972 229
    下载: 导出CSV

    表 2 

    全国实时流CNN事件识别结果

    Table 2. 

    CNN events identification of the national real-time data stream

    下载: 导出CSV
  •  

    Akaike H.1974.A new look at the statistical model identification.IEEE Transactions on Automatic Control, 19(6):716-723, doi:10.1109/TAC.1974.1100705.

     

    Akazawa T.2004.A technique for automatic detection of onset time of P-and S-Phases in strong motion records.//13th World Conference on Earthquake Engineering.Vancouver B C, Canada: International Association for Earthquake Engineering.

     

    Allen R V.1978.Automatic earthquake recognition and timing from single traces.Bulletin of the Seismological Society of America, 68(5):1521-1532. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=68/5/1521

     

    Chen C, Holland A A.2016.PhasePApy:A robust pure python package for automatic identification of seismic phases.Seismological Research Letters, 87(6):1384-1396, doi:10.1785/0220160019.

     

    Fang L H, Wu J P, Wang W L, et al.2015.Aftershock observation and analysis of the 2013 MS7.0 Lushan earthquake.Seismological Research Letters, 86(4):1135-1142. doi: 10.1785/0220140186

     

    Gentili S, Michelini A.2006.Automatic picking of P and S phases using a neural tree.Journal of Seismology, 10(1) 39-63, doi:10.1007/s10950-006-2296-6.

     

    Goodfellow I, Bengio Y, Courville A, et al.2016.Deep Learning.The MIT Press.

     

    He K M, Zhang X Y, Ren S Q, et al.2016.Deep residual learning for image recognition.//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas, NV, USA: IEEE.

     

    Küperkoch L, Meier T, Lee J, et al.2010.Automated determination of P-phase arrival times at regional and local distances using higher order statistics.Geophysical Journal International, 181(2):1159-1170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdb37311d407b35fdf09b67cb4948951

     

    Kong Q K, Allen R M, Schreier L, et al.2016.Myshake:A smartphone seismic network for earthquake early warning and beyond.Science Advances, 2(2):e1501055, doi:10.1126/sciadv.1501055.

     

    Krischer L, Megies T, Barsch R, et al.2015.ObsPy:A bridge for seismology into the scientific Python ecosystem.Computational Science & Discovery, 8(1):014003, doi:10.1088/1749-4699/8/1/014003.

     

    Krizhevsky A, Sutskever I, Hinton G E.2012.Imagenet classification with deep convolutional neural networks.//Advances in Neural Information Processing Systems, 1097-1105.

     

    LeCun Y, Bengio Y, Hinton G.2015.Deep learning.Nature, 521(7553):436-444. doi: 10.1038/nature14539

     

    Perol T, Gharbi M, Denolle M.2018.Convolutional neural network for earthquake detection and location.Science Advances, 4(2):e1700578, doi:10.1126/sciadv.1700578.

     

    Ross Z E, White M C, Vernon F L, et al.2016.An improved algorithm for real-time S-wave picking with application to the (augmented) ANZA network in southern California.Bulletin of the Seismological Society of America, 106(5):2013-2022, doi:10.1785/0120150230.

     

    Ross Z E, Meier M A, Hauksson E, et al.2018.Generalized seismic phase detection with deep learning.Bulletin of the Seismological Society of America, 108(5A):2894-2901, doi:10.1785/0120180080.

     

    Skoumal R J, Brudzinski M R, Currie B S, et al.2014.Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence.Earth and Planetary Science Letters, 405:274-280. doi: 10.1016/j.epsl.2014.08.033

     

    Sleeman R, Van Eck T.1998.Robust automatic P-phase picking:An on-line implementation in the analysis of broadband seismogram recordings.Physics of the Earth and Planetary Interiors, 113(1-4):265-275. http://www.sciencedirect.com/science/article/pii/S0031920199000072

     

    Trnkoczy A.2012.Understanding and parameter setting of STA/LTA trigger algorithm.//Bormann P ed.New Manual of Seismological Observatory Practice 2 (NMSOP-2).Potsdam: Deutsches GeoForschungsZentrum GFZ.

     

    Wang J, Teng T L.1995.Artificial neural network-based seismic detector.Bulletin of the Seismological Society of America, 85(1):308-319. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.maturitas.2010.07.008/

     

    Withers M, Aster R, Young C, et al.1998.A comparison of select trigger algorithms for automated global seismic phase and event detection.Bulletin of the Seismological Society of America, 88(1):95-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=133627739c39dbce25606a48e254da77

     

    Yoon C E, O'Reilly O, Bergen K J, et al.2015.Earthquake detection through computationally efficient similarity search.Science Advances, 1(11):e1501057, doi:10.1126/sciadv.1501057.

     

    Zhang H, Thurber C, Rowe C.2003.Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings.Bulletin of the Seismological Society of America, 93(5):1904-1912. doi: 10.1785/0120020241

     

    Zhao Y, Takano K.1999.An artificial neural network approach for broadband seismic phase picking.Bulletin of the Seismological Society of America, 89:670-680. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31e573879dc619b242165a932027a8c2

  • 加载中

(5)

(2)

计量
  • 文章访问数:  4977
  • PDF下载数:  2220
  • 施引文献:  0
出版历程
收稿日期:  2018-03-12
修回日期:  2018-12-14
上线日期:  2019-01-05

目录