地震预警PGV-Pd关系参数的距离分段特征

刘辰, 李小军, 景冰冰, 席楠, 田秀丰. 2019. 地震预警PGV-Pd关系参数的距离分段特征. 地球物理学报, 62(4): 1413-1426, doi: 10.6038/cjg2019L0456
引用本文: 刘辰, 李小军, 景冰冰, 席楠, 田秀丰. 2019. 地震预警PGV-Pd关系参数的距离分段特征. 地球物理学报, 62(4): 1413-1426, doi: 10.6038/cjg2019L0456
LIU Chen, LI XiaoJun, JING BingBing, XI Nan, TIAN XiuFeng. 2019. The distance segmentation characters of PGV-Pd relationship parameters for earthquake early warning. Chinese Journal of Geophysics (in Chinese), 62(4): 1413-1426, doi: 10.6038/cjg2019L0456
Citation: LIU Chen, LI XiaoJun, JING BingBing, XI Nan, TIAN XiuFeng. 2019. The distance segmentation characters of PGV-Pd relationship parameters for earthquake early warning. Chinese Journal of Geophysics (in Chinese), 62(4): 1413-1426, doi: 10.6038/cjg2019L0456

地震预警PGV-Pd关系参数的距离分段特征

  • 基金项目:

    国家自然科学基金重点项目(U1434210),中央级公益性科研院所基本科研业务费专项(0416904),国家自然科学基金创新群体项目(51421005)资助

详细信息
    作者简介:

    刘辰, 男, 1988年生, 博士研究生, 主要从事地震预警方面的研究.E-mail:liuchenigcea@126.com

    通讯作者: 李小军, 男, 1965年生, 研究员, 博士生导师, 主要从事地震工程学和地震学等方面的研究.E-mail:beerli@vip.sina.com
  • 中图分类号: P315

The distance segmentation characters of PGV-Pd relationship parameters for earthquake early warning

More Information
  • 地震预警系统需要在破坏性的地震波到来前快速估算地震参数和地震动参数,以对可能出现的地震灾害进行预测,对重要工程、人员密集区域发布警报信息.以Pd估测PGV的方法是地震预警研究涉及的一种重要问题,该方法利用初至P波触发后前几秒的峰值位移(Pd)对最终地震动峰值速度(PGV)进行估算,以满足预警的需要.本文对2016年在日本发生的熊本地震及其前震、余震的震中距100 km以内、矩震级大于4级、井下基岩PGA>5 cm·s-2和地表PGA>20 cm·s-2的Kik-net强地震动记录进行处理分析,用于研究以Pd估测PGV的方法.将获得的强地震动数据按震中距从0~100 km平均划分为5个区段,在记录时间3~10 s范围内将Pd的计算取8个时间窗,分别对每个震中距区段、每一个Pd的时间窗下的PGV-Pd数据进行线性拟合,最终提出了一套应对不同震中距对位移幅值连续追踪测定PGV的算法.对每一个震中距区段的研究表明,震中距会对PGV-Pd关系产生影响.对5次地震进行验证分析,认为基于基岩记录估测基岩PGV的准确度高于基于地表记录估测地表PGV的准确度;对震中距进行分段的PGV估测方法准确度高于不考虑震中距因子的估测方法.最后拓展了将井下基岩Pd估测井下基岩PGV这种原地地震预警方法,使其能够为异地P波预警方法服务.

  • 加载中
  • 图 1 

    基岩地震动(A)及地表地震动(B)记录信息

    Figure 1. 

    Borehole (A) and surface (B) ground motion records information

    图 2 

    基于井下基岩地震动记录得到的PGV-Pd结果

    Figure 2. 

    PGV-Pd results from borehole records

    图 3 

    基于地震动记录得到的PGV-Pd结果

    Figure 3. 

    PGV-Pd results from surface records

    图 4 

    3 s时间窗下不同震中距分段的基岩PGV-Pd关系

    Figure 4. 

    The PGV-Pd relations from the time window width of 3s for the borehole data with different epicentral distance sections

    图 5 

    3 s时间窗下不同震中距分段的地表PGV-Pd关系

    Figure 5. 

    The PGV-Pd relations from the time window width of 3s for the surface data with different epicentral distance sections

    图 6 

    (a) 近年来不同统计关系式的对比;(b)不同震中距分段研究结果对比

    Figure 6. 

    (a) Contrast of different statistical relationships in recent years; (b) Comparison of subsection results from different epicentral distances

    图 7 

    3次震级小于6级地震的PGV估测结果(A)与PGV估测误差(B),真实PGV(圆)与估测PGV(叉)

    Figure 7. 

    PGV estimation results (A) and error (B) of the selected 3 earthquake with magnitude less than 6, real PGA (circle) and estimated PGA (fork)

    图 8 

    2016年10月21日M6.6地震的PGV估测结果(A)与PGV估测误差(B),真实PGV(圆)与估测PGV(叉)

    Figure 8. 

    PGV estimation results (A) and error (B) of the Oct 21, 2016 M6.6 earthquake, real PGA (circle) and estimated PGA (fork)

    图 9 

    2016年12月28日M6.3地震的PGV估测结果(A)与PGV估测误差(B),真实PGV(圆)与估测PGV(叉)

    Figure 9. 

    PGV estimation results (A) and error (B) of the Dec 28, 2016 M6.3 earthquake, real PGA (circle) and estimated PGA (fork)

    图 10 

    2016年12月28日M6.3地震IBRH14台站波形记录

    Figure 10. 

    Waveform records of IBRH14 stations at M6.3 earthquake on December 28, 2016

    图 11 

    5次检验用地震的震级估测结果

    Figure 11. 

    Magnitude estimation results of the 5 selected earthquake for real PGV estimate the magnitude of the circular, fork segments according to the epicentral distance for magnitude estimation results, no square epicentral distance segment magnitude estimation results

    图 12 

    用于震级预测的5次地震的分布与台站的分布

    Figure 12. 

    The distribution of the five earthquakes and the distribution of stations used for the magnitude prediction

    表 1 

    不同震中距分段和时间窗长情况下PGV-Pd关系(式(2))

    Table 1. 

    Statistical parameter of the PGV-Pd relation(equation (2)) in different epicentral distance sections and time window widths

    时间窗长 0~20 km基岩 0~20 km地表 20~40 km基岩 20~40 km地表 40~60 km基岩 40~60 km地表
    a b std a b std a b std a b std a b std a b std
    3 0.782 1.101 0.311 0.623 1.314 0.393 0.596 0.866 0.328 0.477 1.080 0.315 0.605 0.857 0.376 0.520 1.115 0.319
    4 0.778 1.022 0.291 0.728 1.409 0.329 0.616 0.807 0.326 0.523 1.115 0.294 0.627 0.877 0.339 0.540 1.137 0.290
    5 0.764 0.954 0.287 0.735 1.389 0.307 0.640 0.754 0.312 0.557 1.095 0.279 0.629 0.854 0.328 0.541 1.116 0.283
    6 0.750 0.910 0.279 0.714 1.343 0.300 0.674 0.727 0.248 0.557 1.024 0.255 0.670 0.880 0.309 0.569 1.115 0.281
    7 0.735 0.874 0.286 0.746 1.365 0.293 0.666 0.671 0.244 0.573 1.022 0.225 0.683 0.810 0.286 0.574 1.059 0.270
    8 0.721 0.839 0.287 0.749 1.358 0.277 0.656 0.635 0.241 0.558 0.985 0.230 0.694 0.738 0.280 0.588 0.992 0.272
    9 0.721 0.832 0.288 0.789 1.400 0.257 0.650 0.602 0.234 0.562 0.977 0.208 0.680 0.644 0.261 0.582 0.924 0.266
    10 0.721 0.829 0.284 0.785 1.394 0.258 0.635 0.560 0.223 0.553 0.952 0.207 0.687 0.618 0.248 0.577 0.884 0.260
    时间窗长 60~80 km基岩 60~80 km地表 80~100 km基岩 80~100 km地表 0~100 km基岩 0~100 km地表
    a b std a b std a b std a b std a b std a b std
    3 0.738 1.032 0.357 0.619 1.222 0.294 0.706 0.880 0.364 0.609 1.015 0.256 0.687 0.951 0.352 0.611 1.234 0.338
    4 0.735 0.988 0.327 0.607 1.164 0.275 0.705 0.839 0.334 0.601 0.968 0.239 0.693 0.907 0.325 0.642 1.247 0.304
    5 0.741 0.964 0.304 0.597 1.109 0.257 0.717 0.843 0.318 0.607 0.962 0.225 0.693 0.863 0.311 0.651 1.223 0.285
    6 0.707 0.855 0.278 0.569 1.023 0.240 0.712 0.809 0.303 0.587 0.898 0.219 0.697 0.826 0.285 0.641 1.165 0.272
    7 0.716 0.840 0.279 0.577 1.021 0.236 0.688 0.740 0.303 0.565 0.839 0.225 0.697 0.787 0.279 0.650 1.150 0.263
    8 0.747 0.857 0.276 0.606 1.037 0.234 0.682 0.704 0.299 0.557 0.809 0.225 0.701 0.758 0.276 0.657 1.128 0.259
    9 0.786 0.853 0.267 0.663 1.080 0.222 0.676 0.670 0.294 0.560 0.795 0.219 0.702 0.722 0.271 0.676 1.124 0.250
    10 0.790 0.786 0.257 0.665 1.026 0.215 0.682 0.644 0.289 0.569 0.778 0.222 0.703 0.688 0.267 0.676 1.094 0.255
    下载: 导出CSV

    表 2 

    用于验证地震动参数估测准确程度的5次地震的地震参数

    Table 2. 

    The seismic parameters of 5 earthquakes are used to verify the accuracy of seismic parameters estimation

    发震时间 纬度(°N) 经度(°E) 深度/km 震级M
    2016-12-28 21:38 36.72 140.57 011 km 6.3
    2016-10-21 14:07 35.38 133.85 011 km 6.6
    2016-06-16 14:21 41.95 140.99 011 km 5.3
    2015-06-04 04:34 43.49 144.06 000 km 5.0
    2016-02-06 10:25 33.73 134.37 011 km 5.1
    下载: 导出CSV
  •  

    Alcik H, Ozel O, Wu Y M et al. 2011. An alternative approach for the Istanbul earthquake early warning system, Soil Dynamics and Earthquake Engineering, 31, 181-187 doi: 10.1016/j.soildyn.2010.03.007

     

    Allen R M, Kanamori H. 2003. The potential for earthquake early warning in Southern California. Science, 300(5620):786-789. doi: 10.1126/science.1080912

     

    Böse M, Heaton T, Hauksson E. 2012. Rapid estimation of earthquake source and ground-motion parameters for earthquake early warning using data from a single three-component broadband or strong-motion sensor. Bulletin of the Seismological Society of America, 102(2):738-750. doi: 10.1785/0120110152

     

    Caprio M, Lancieri M, Cua G B, et al. 2011. An evolutionary approach to real-time moment magnitude estimation via inversion of displacement spectra. Geophysical Research Letters., 38:L02301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=953f8bdf45046b0e6c8f26a6b0cd0ad8

     

    Eshaghi A, Tiampo K F, Ghofrani H, et al. 2013. Using borehole records to estimate magnitude for earthquake and tsunami early-warning systems. Bulletin of the Seismological Society of America, 103(4):2216-2226. doi: 10.1785/0120120319

     

    Espinosa-Aranda J M, Cuellar A, Garcia A, et al. 2009. Evolution of the Mexican Seismic Alert System (SASMEX). Seismological Research Letters, 80, 694-706. doi: 10.1785/gssrl.80.5.694

     

    Hoshiba M, Iwakiri K. 2011. Initial 30 seconds of the 2011 off the Pacific Coast of Tohoku Earthquake (MW9.0), amplitude and τc for magnitude estimation for Earthquake Early Warning. Earth, Planets and Space, 63:553-557.

     

    Hoshiba M, Iwakiri K, Hayashimoto N, et al. 2012. Outline of the 2011 off the Pacific coast of Tohoku Earthquake (MW9.0)-Earthquake Early Warning and observed seismic intensity. Earth, Planets and Space, 63:547-551. http://cn.bing.com/academic/profile?id=3dc5ab8d59ded3390059c3a19fff9cc4&encoded=0&v=paper_preview&mkt=zh-cn

     

    Hsiao N C, Wu Y M, Zhao L, et al. 2011. A new prototype system for earthquake early warning in Taiwan. Soil Dynamics and Earthquake Engineering, 31(2):201-208. http://cn.bing.com/academic/profile?id=c926ec6fda0fa23eeb1d9933f0179fa5&encoded=0&v=paper_preview&mkt=zh-cn

     

    Iannaccone G, Zollo A, Elia L, et al. 2009. A prototype system for earthquake early-warning and alert management in southern Italy. Bulletin of Earthquake Engineering. Doi10.1007/s10518-009-9131-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0c4ff6f1a4488b387bf52381606d236

     

    Jin X, Zhang H C, Li J, et al. 2012. Research on earthquake early warning magnitude estimate. Acta Seismologica Sinica (in Chinese), 34(5):593-610. http://d.old.wanfangdata.com.cn/Periodical/dizhen201205002

     

    Kodera Y, Saitou J, Hayashimoto N, et al. 2016. Earthquake early warning for the 2016 Kumamoto earthquake:performance evaluation of the current system and the next-generation methods of the Japan Meteorological Agency. Earth, Planets and Space, 68:202. doi: 10.1186/s40623-016-0567-1

     

    Lior I, Ziv A, Madariaga R. 2016. P-wave attenuation with implications for earthquake early warning. Bulletin of the Seismological Society of America, 106(1):13-22. doi: 10.1785/0120150087

     

    Li X J, Wen R Z, Zhou Z H, et al. 2015. Key technology of earthquake emergency disposal and its application in rapid rail Transit. China Science and Technology Achievements. 2015(11):47-48.

     

    Ma Q. 2008. Study and application on earthquake early warning[Ph.D.thesis] (in Chinese). Harbin: Institute of Engineering Mechanics, CEA.

     

    Ma Q, Li S L, Li S Y. 2014. On the correlation of ground motion parameters with seismic intensity. Earthquake Engineering and Engineering Dynamics. 34(4):83-92. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ec963b97f712217e04ebbf10b737b7c9

     

    Murphy S, Nielsen S. 2009. Estimating earthquake magnitude with early arrivals:A test using dynamic and kinematic models. Bulletin of the Seismological Society of America, 99(1):1-23. doi: 10.1785/0120070246

     

    Nakamura Y. 1988. On the urgent earthquake detection and alarm system (UrEDAS).//Proceedings of the 9th World Conference on Earthquake Engineer. Tokyo-Kyoto: JAPAN.

     

    Peng C Y, Yang J S, Xue B, et al. 2014. Exploring the feasibility of earthquake early warning using records of the 2008 Wenchuan earthquake and its aftershocks. Soil Dynamics and Earthquake Engineering, 57:86-93. doi: 10.1016/j.soildyn.2013.11.005

     

    Wald D J, Quitoriano V, Heaton T H, et al. 1999. Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthquake Spectra, 15(3):557-564. doi: 10.1193/1.1586058

     

    Wu Y M, Kanamori H. 2005. Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P Waves. Bulletin of the Seismological Society of America, 95(3):1181-1185. doi: 10.1785/0120040193

     

    Wu Y M, Zhao L. 2006. Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning. Geophysical Research Letters., 33:L16312. doi: 10.1029/2006GL026871

     

    Wu Y M, Kanamori H, Allen R M, et al. 2007. Determination of earthquake early warning parameters, τc and Pd, for southern California. Geophysical Journal International, 170(2):711-717. doi: 10.1111/gji.2007.170.issue-2

     

    Wu Y M, Kanamori H. 2008. Development of an earthquake early warning system using real-time strong motion signals. Sensors, 8(1):1-9. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1004e28e6f742f8e4b7d6af8bca524f3

     

    Zollo A, Amoroso O, Lancieri M, et al. 2010. A threshold-based earthquake early warning using dense accelerometer networks. Geophysical Journal International, 183(2):963-974. doi: 10.1111/j.1365-246X.2010.04765.x

     

    金星, 张红才, 李军等. 2012.地震预警震级确定方法研究.地震学报, 34(5):593-610. doi: 10.3969/j.issn.0253-3782.2012.05.002

     

    李小军, 温瑞智, 周正华等. 2015.地震紧急处置关键技术及在快速轨道交通工程中的应用.中国科技成果, 2015年第11期. 47-48. doi: 10.3772/j.issn.1009-5659.2015.11.026

     

    马强. 2008.地震预警技术研究及应用[博士论文].哈尔滨: 中国地震局工程力学研究所.http://cdmd.cnki.com.cn/Article/CDMD-85406-2009057325.htm

     

    马强, 李水龙, 李山有等. 2014.不同地震动参数与地震烈度的相关性分析.地震工程与工程震动, 34(4):83-92. http://d.old.wanfangdata.com.cn/Conference/8421967

  • 加载中

(12)

(2)

计量
  • 文章访问数:  1299
  • PDF下载数:  364
  • 施引文献:  0
出版历程
收稿日期:  2017-07-28
修回日期:  2019-02-27
上线日期:  2019-04-05

目录