一种确定震源中心的方法:逆时成像技术(一)——原理与数值实验

许力生, 杜海林, 严川, 李春来. 一种确定震源中心的方法:逆时成像技术(一)——原理与数值实验[J]. 地球物理学报, 2013, 56(4): 1190-1206, doi: 10.6038/cjg20130414
引用本文: 许力生, 杜海林, 严川, 李春来. 一种确定震源中心的方法:逆时成像技术(一)——原理与数值实验[J]. 地球物理学报, 2013, 56(4): 1190-1206, doi: 10.6038/cjg20130414
XU Li-Sheng, DU Hai-Lin, YAN Chuan, LI Chun-Lai. A method for determination of earthquake hypocentroid: time-reversal imaging technique Ⅰ——Principle and numerical tests[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(4): 1190-1206, doi: 10.6038/cjg20130414
Citation: XU Li-Sheng, DU Hai-Lin, YAN Chuan, LI Chun-Lai. A method for determination of earthquake hypocentroid: time-reversal imaging technique Ⅰ——Principle and numerical tests[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(4): 1190-1206, doi: 10.6038/cjg20130414

一种确定震源中心的方法:逆时成像技术(一)——原理与数值实验

详细信息
    作者简介:

    许力生,男,研究员,主要从事震源运动学和几何学方面的研究. E-mail:xuls@cea-igp.ac.cn

  • 中图分类号: P315

A method for determination of earthquake hypocentroid: time-reversal imaging technique Ⅰ——Principle and numerical tests

  • 研究地震断层的精细结构需要对地震活动精确定位,然而,盖戈类标准定位方法已经不能胜任.现今计算机技术的发展使我们能够直接面对地震定位这个非线性问题,所以,我们提出一种称为逆时成像技术的确定地震震源中心的非线性方法.首先,从位移表示定理出发,阐述了逆时成像技术的原理;然后,通过多组数值实验,论证了这种技术的可行性.由于直接采用直达波信号构建包络信号,进而采用互相关技术测量观测到时,因此,观测到时的准确性和客观性得到了提升;由于采用波形聚束方法直接建立观测到时和震源位置的非线性关系,因此,绕开了盖戈类方法的线性化过程,从而杜绝了非线性问题线性化过程造成的误差;由于采用波形聚束方法而不是经典的最小二乘法求解,所以,克服了最小二乘解对于少数或者个别"出格数据(outlier)"敏感的缺点;由于采用非均匀网格搜索的方法确定非线性系统的解,所以,可以利用解集的特征半径描述解的分辨率,进而利用观测到时的标准差和分辨率来描述解的不确定性,避免了以观测误差为正态分布的假设为前提的统计方法,克服了这类方法常常给出脱离实际意义的结果的不足.然而,由于采用网格搜索方法求解非线性方程,所以,与盖戈类方法相比,计算效率相对较低.例如:这里的每次定位过程在普通的个人计算机上需要大约30 s.不过,用时间换取精度也是惯常的选择.
  • 加载中
  • [1]

    Geiger L. Herdbestimmtung bei Erdbeben ans den Ankunftszeiten. K. Gesel. Wiss. Gott., 1910, 331-349. Geiger L. Probability method for the determination of earthquake epicenters from the arrival time only. Bull. St. Louis. Univ., 1912, 8(1): 60-71.

    [2]

    Bratt S R, Bache T C. Locating events with a sparse network of regional arrays. Bull. Seism. Soc. Am., 1988, 78(2): 780-798.

    [3]

    Flinn E A. Confidence regions and error determinations for seismic event location. Rev. Geophys., 1965, 3(1): 157-185.

    [4]

    Buland R. The mechanics of locating earthquakes. Bull. Seism. Soc. Am., 1976, 66(1): 173-187.

    [5]

    Jordan T H, Sverdrup K A. Teleseismic location techniques and their application to earthquake clusters in the South-Central Pacific. Bull. Seism. Soc. Am., 1981, 71(4): 1105-1130.

    [6]

    Rowlett H, Forsyth D W. Recent faulting and microearthquakes at the intersection of the Vema Fracture Zone and the Mid-Atlantic Ridge. J. Geophys. Res., 1984, 89(B7): 6079-6094.

    [7]

    Ito A. High resolution relative hypocenters of similar earthquakes by cross-spectral analysis method. J. Phys. Earth., 1985, 33(4): 279-294.

    [8]

    Ito A. Earthquake swarm activity revealed from high-resolution relative hypocenters-clustering of microearthquakes. Tectonophysics, 1990, 175(1-3): 47-66.

    [9]

    Smith E G C. Scaling the equations of condition to improve conditioning. Bull. Seism. Soc. Am., 1976, 66(6): 2075-2076.

    [10]

    Spence W. Relative epicenter determination using P-wave arrival-time differences. Bull. Seism. Soc. Am., 1980, 70(1): 171-183.

    [11]

    Anderson K R. Robust earthquake location using M-estimates. Phys. Earth Planet. Interiors, 1982, 30(2-3): 119-130.

    [12]

    Thurber C H. Nonlinear earthquake location: theory and examples. Bull. Seism. Soc. Am., 1985, 75(3): 779-790.

    [13]

    Pavlis G L. Appraising earthquake hypocenter location errors: a complete, practical approach for single-event location. Bull. Seism. Soc. Am., 1986, 76(6): 1699-1717.

    [14]

    Bolt B A. The revision of earthquake epicentres, focal depths and origin-times using a high-speed computer. Geophys. J. R. Astron. Soc., 1960, 3(4): 433-440.

    [15]

    Anderson K R. Epicentral location using arrival time order. Bull. Seism. Soc. Am., 1981, 71(2): 541-546.

    [16]

    Chave A D, Thomson D J, Ander M E. On the robust estimation of power spectra, coherences, and transfer functions. J. Geophys. Res., 1987, 92(B1): 633-648.

    [17]

    Andrews D F. A robust method for multiple linear regression. Technometrics, 1974, 16(4): 523-531.

    [18]

    Lilwall R C, Francis T J G. Hypocentral resolution of small ocean bottom seismic networks. Geophys. J. R. Astron. Soc., 1978, 54(3): 721-728.

    [19]

    Evernden J F. Precision of epicenters obtained by small numbers of world-wide stations. Bull. Seism. Soc. Am., 1969, 59(3): 1365-1398.

    [20]

    Waldhauser F, Ellsworth W L. A Double-difference earthquake location algorithm: Method and application to the Northern Hayward fault, California. Bull. Seism. Soc. Am., 2000, 90(6): 1353-1368.

    [21]

    Geller R J, Mueller C S. Four similar earthquakes in central California. Geophys. Res. Lett., 1980, 7(10): 821-824.

    [22]

    Deichmann N, Garcia-Fernandez M. Rupture geometry from high-precision relative hypocentre locations of microearthquake clusters. Geophys. J. Int., 1992, 110(3): 501-517.

    [23]

    Poupinet G, Ellsworth W L, Fréchet J. Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras fault, California. J. Geophys. Res., 1984, 89(B7): 5719-5731.

    [24]

    Scherbaum F, Wendler J. Cross spectral analysis of Swabian Jura (SW Germany) three-component microearthquake recordings. J. Geophys., 1986, 60(2): 157-166.

    [25]

    Spudich P, Bostwick T. Studies of the seismic coda using an earthquake cluster as a deeply buried seismograph array. J. Geophys. Res., 1987, 92(B10): 10526-10546.

    [26]

    Frémont M J, Malone S D. High precision relative locations of earthquakes at Mount St. Helens, Washington. J. Geophys. Res., 1987, 92(B10): 10223-10236.

    [27]

    Console R, Di Giovambattista R. Local earthquake relative location by digital records. Phys. Earth. Planet. Inter., 1987, 47: 43-49.

    [28]

    Pechmann J C, Thorbjarnardottir B S. Waveform analysis of preshock-mainshock-aftershock sequence in Utah. Bull. Seism. Soc. Am., 1990, 80(3): 519-550.

    [29]

    Aki K, Richards P G. Quantitative Seismology. San Francisco: W. H. Freeman and Company, 1980: 38-40.

    [30]

    Krüger F, Ohrnberger M. Tracking the rupture of the MW=9.3 Sumatra earthquake over 1150 km at teleseismic distance. Nature, 2005, 435(7044): 937-939.

    [31]

    Ishii M, Shearer P, Houston H, et al. Extend, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 2005, 435(7044): 933-936.

    [32]

    Xu Y, Koper K D, Sufri O, Zhu L P. Rupture imaging of the Mw7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves. Geochem. Geophys. Geosyst., 2009, 10(4): Q04006.

    [33]

    杜海林. 2004年苏门答腊—安达曼大地震能量辐射源的时间域台阵技术分析[硕士论文]. 北京: 中国地震局地球物理研究所, 2007. Du H L. Analysis of the energy radiation sources of the 2004 Sumatra-Andaman earthquake using time-domain array techniques (in Chinese)[Master's thesis]. Beijing: Institute of Geophysics, China Earthquake Administration, 2007.

    [34]

    Rost S, Thomas C. Array seismology: methods and applications. Rev. Geophys., 2002, 40(3): 2-1-2-27.

    [35]

    Larmat C, Montagner J P, Fink M, et al. Time-reversal imaging of seismic sources and application to the great Sumatra earthquake. Geophys. Res. Lett., 2006, 33(19): L19312.

    [36]

    Kennett B L N. Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press, 1983:1-342.

  • 加载中
计量
  • 文章访问数:  3034
  • PDF下载数:  3871
  • 施引文献:  0
出版历程
收稿日期:  2012-11-19
修回日期:  2013-01-22
上线日期:  2013-04-20

目录